
Short 2-Move Undeniable Signatures

Jean Monnerat? and Serge Vaudenay

EPFL, Switzerland
http://lasecwww.epfl.ch/

Abstract. Attempting to reach a minimal number of moves in crypto-
graphic protocols is a quite classical issue. Besides the theoretical inter-
ests, minimizing the number of moves can clearly facilitate practical im-
plementations in environments with communication constraints. In this
paper, we offer a solution to this problem in the context of undeniable
signatures with interactive verification protocols by proposing a way to
achieve these protocols in 2 moves. To this goal, we review a scheme
we proposed at Asiacrypt 2004 whose property is the full scalability of
the signature length against security. We slightly modify (to make it non-
transferable) a 2-move version of this scheme which was mentioned in the
original article without a proof of security. In the random oracle model,
we prove the security of the modified version against an active adver-
sary and precisely assess the security in terms of the signature length.
To the best of our knowledge, this scheme is the first 2-move undeniable
signature scheme with a security proof.

Key words: Undeniable signatures, 2-move protocols.

1 Introduction

The concept of undeniable signature was introduced by Chaum and van Antwer-
pen [6] in 1989. The difference between this kind of signature and a classical one
is that the verification of a signature cannot be achieved without the cooper-
ation of the signer (originally, for privacy motivations). Namely, by interacting
with a verifier in a so-called confirmation (resp. denial) protocol the signer is
able to prove the validity (resp. invalidity) of a given message-signature pair.
This property opposes to the universal verifiability of classical digital signatures
and allows the signer to have a control on the spread of his signatures. Further
applications of undeniable signatures such as licensing software or auctions were
proposed in the literature. Since then, lots of contributions and new schemes
have been published, among them are [3,5,8,9,13,14,17,18,19].

At Eurocrypt 2005, Kurosawa et al. [13] proposed a variant of the scheme of
Chaum [5] with 3-move confirmation and denial protocols in the random oracle
model. Although this scheme does not achieve non-transferability, it is the first

? Supported by a grant of the Swiss National Science Foundation, 200020-109133.

one presenting 3-move protocols with a security proof. Until this scheme pro-
posal, all provably secure interactive undeniable signature schemes were com-
posed of zero-knowledge confirmation and denial protocols which required at
least 4 moves. Non-interactive variants of undeniable signatures can be obtained
as shown in [12,15] using a so-called designated verifier technique by using clas-
sical techniques for non-transferability. In this setting, the signature is only in-
tended to one designated recipient. To ensure that this one cannot convince an-
other party of the validity of the signature, it is required that the recipient could
have been able (with his secret key) to produce the signature. When this can
be done perfectly, we say that the scheme satisfies perfect non-transferability. In
this case, such (designated verifier) signatures cannot satisfy the non-repudiation
property.

The main contribution of this article is to show how to achieve a scheme with
interactive protocols having a minimal number of rounds. To this end, we revisit a
2-move variant of the MOVA undeniable signature we mentioned in [17] (without
any security proof). In order to achieve perfect non-transferability, we modify
the protocols of the MOVA scheme by adding a trapdoor one-way permutation
with a secret key associated to the verifier. This differs from the commonly
used techniques of trapdoor commitments which does not seem appropriate for
a 2-move protocol. In the random oracle model, we provide some formal security
proofs on the different required properties related to the confirmation and denial
protocols such as the soundness, zero-knowledge and non-transferability. We redo
the invisibility and unforgeability analysis in settings where the attacker has
access to signing, confirmation and denial oracles. This provides precise security
bounds and explain how to select MOVA parameters.

In the next section, we recall the definition of an undeniable signature. Sec-
tion 3 is devoted to the security model of an undeniable signature. Then, we
present the 4-move and modified 2-move versions of the MOVA scheme [17] in
Section 4. We prove security properties of the modified 2-move version in the
subsequent section. Finally, Section 6 concludes this paper.

2 Undeniable Signature

We consider two players who are the signer (S) and the verifier (V). Let k ∈ N
be a security parameter,M be the message space and Σ be the signature space.
An undeniable signature scheme is composed of the four following algorithms.

Setup The setup is composed of two probabilistic polynomial time algorithms
SetupS and SetupV producing the signer’s key pair (KS

p ,KS
s) ← SetupS(1k)

and the verifier’s key pair (KV
p ,KV

s)← SetupV(1k).
Sign Let m ∈ M be a message to sign. On the input of the signer’s secret key
KS

s , the (probabilistic) polynomial time algorithm Sign generates a signature
σ ← Sign(m,KS

s) of m (which lies in Σ). We say that (m,σ) is valid if there
exists a random tape such that Sign(m,KS

s) outputs σ. Otherwise, we say
that (m,σ) is invalid.

2

Confirm Let (m,σ) ∈ M × Σ be a supposedly valid message-signature pair.
Confirm is an interactive protocol between S and V i.e., a pair of interactive
probabilistic polynomial time algorithms ConfirmS and ConfirmV such that
m, σ, KS

p , KV
p is input of both, KS

s is the auxiliary input of ConfirmS, KV
s

is the auxiliary input of ConfirmV. At the end of the protocol, ConfirmV

outputs a boolean value which tells whether σ is accepted as valid signature
of m.

Deny Let (m,σ′) ∈ M× Σ be an alleged invalid message-signature pair. Deny
is an interactive protocol between S and V i.e., a pair of interactive proba-
bilistic polynomial time algorithms DenyS and DenyV such that m, σ′, KS

p ,
KV

p , is input of both, KS
s is the auxiliary input of DenyS, KV

s is the auxiliary
input of DenyV. At the end of the protocol, DenyV outputs a boolean value
which tells whether σ′ is accepted as invalid signature.

An execution of the confirmation (resp. denial) protocol will be denoted by
ConfirmS,V(?) (resp. DenyS,V(?)), where ? is the common input of the players.

3 Security Model

This section is devoted to the different security notions which are required for
an undeniable signature to be secure. We consider four basic security notions
related to the confirmation and denial protocols which are the completeness,
the soundness, zero-knowledge, and the non-transferability. The last one ensures
that a malicious verifier is not able to convince any third party of the validity of
the statement (e.g., a given message signature is valid) proven in the protocol.
The non-transferability notion may be important in some applications where the
validity of the proof itself is valuable (like for licensing software).

Security notions about the undeniable signature are considered as well. We
require non-repudiation by resisting adaptive existential forgery attacks. Fur-
thermore, since the motivation of undeniable signature was to avoid the universal
verifiability (like for classical signatures), it is important that a scheme satisfies
the invisibility property. We will consider an active attacker who has access to
some oracles and who will have to distinguish a valid message-signature pair
from a randomly picked one.

We recall the definition of the statistical distance between two distributions.

Definition 1. The statistical distance ∆ between two random variables X1 and
X2 with range X is ∆(X1, X1) := 1

2

∑
x∈X |Pr[X1 = x]− Pr[X2 = x]|.

Completeness. Given random key pairs (KS
p ,KS

s)← SetupS(1k), (KV
p ,KV

s)←
SetupV(1k), for any valid (resp. invalid) message-signature pair (m,σ) ∈
M × Σ, the confirmation (resp. denial) protocol ConfirmS,V(m, σ,KS

p ,KV
p)

(resp. DenyS,V(m,σ,KS
p ,KV

p)) outputs 1 with probability 1 when S and V
correctly follow all steps of the protocol.

3

Soundness. Given random key pairs (KS
p ,KS

s) ← SetupS(1k), (KV
p ,KV

s) ←
SetupV(1k), for any invalid (resp. valid) message-signature pair (m,σ) ∈
M× Σ and any cheating signer S∗ (modelled as a probabilistic polynomial
time interactive algorithm with access to KS

s), the probability that the pro-
tocol ConfirmS∗,V(m,σ,KS

p ,KV
p) (resp. DenyS∗,V(m, σ,KS

p ,KV
p)) succeeds is

negligible with respect to k.
The success probability of S∗ is denoted by Succsd-con

S∗ (resp. Succsd-den
S∗).

Straight-Line Zero-Knowledge Let us consider some random key pairs gen-
erated as follows

(KS
p ,KS

s)← SetupS(1k), (KV
p ,KV

s)← SetupV(1k).

The confirmation (resp. denial) protocol is zero-knowledge if there exists a
probabilistic polynomial time oracle machine B called simulator such that for
any probabilistic polynomial verifier V∗ (with or without KV

s) and any valid
(resp. invalid) pair (m,σ) ∈ M× Σ, BV∗ outputs a transcript which is in-
distinguishable from the transcript of the protocol ConfirmS,V∗(m, σ,KS

p ,KV
p)

(resp. DenyS,V∗(m,σ,KS
p ,KV

p)), where S is the honest signer. We assume
that B and V∗ share the same information (e.g., KV

s if any). Namely, when
V∗ has access to some random oracles, B can see the queries (and answers)
as well. Moreover, we say that the protocol is straight-line zero-knowledge if
B does not need to rewind V∗.

Non-Transferability. Let us consider some random key pairs generated as fol-
lows

(KS
p ,KS

s)← SetupS(1k), (KV
p ,KV

s)← SetupV(1k).

The confirmation (resp. denial) protocol is said non-transferable if there ex-
ists a probabilistic polynomial time interactive machine B with input KV

s such
that for any computationally unbounded verifier Ṽ, any pair (m, σ) ∈M×Σ,
the transcript of ConfirmB,Ṽ(m,σ,KS

p ,KV
p) (resp. DenyB,Ṽ(m,σ,KS

p ,KV
p)) is

indistinguishable from that of the protocol ConfirmS,Ṽ(m,σ,KS
p ,KV

p) (resp.
DenyS,Ṽ(m,σ,KS

p ,KV
p)). When Ṽ has access to some random oracles, B does

not see any queries (nor answers) made to them. However, B is assumed to
be given a bit telling whether (m,σ) is valid or not.

We consider here the two following notions of indistinguishability.

Perfect Zero-Knowledge (resp. Non-Transferability). Both transcript
distributions are identical.

Statistical Zero-Knowledge (resp. Non-Transferability). The statistical
distance between the two transcript distributions is negligible.

We note that the definition of non-transferability allows to avoid some at-
tacks in which the verifier V∗ identified with KV

p forwards messages to the honest
signer which were generated by a hidden verifier Ṽ. Namely, our definition as-
sures that V∗ with knowledge of KV

s could simulate the answer of S (without
any help from S) so that Ṽ does not have evidence of the proof validity.

4

Our definition of non-transferability is similar to that proposed by Camenisch
and Michels [4] with the main difference that our version assumes that Ṽ is
computationally unbounded. We can thus assume that Ṽ makes no queries to
the signing and confirmation/denial oracles. Therefore, the non-transferability
of the protocols presented below will also hold with respect to the Camenisch-
Michels definition.

We note that the above definition of zero-knowledge is black-box which means
that we require the existence of one “universal” simulator having an oracle access
to the verifier which is able to produce an indistinguishable transcript for any
verifier. More details about the black-box zero-knowledge notion are given in [10].

In the standard model, Barak et al. [1] proved that zero-knowledge proofs
of an NP-complete language (possibly non-black-box) requires at least 3 moves.
To overcome this limitation, the notion of zero-knowledge was extended in the
random oracle model (for more details, see [2]) in which the queries to the ran-
dom oracles are controlled by the simulator, i.e., it can simulate the output of
the oracles provided that the output distribution is correct. Recently, Pass [21]
proposed the notion of deniable zero-knowledge in the random oracle. The differ-
ence with classical zero-knowledge in the random oracle is that the simulator is
no longer allowed to simulate the output of the random oracles, but is only able
to observe the queries made to the random oracles as well as the corresponding
answers. This actually means that the simulator’s transcript really corresponds
to the view of the verifier. In this model, Pass [21] showed that 2 moves are nec-
essary to achieve zero-knowledge for NP and proposed a general 2-move protocol
for NP which is not very convenient for practical purposes. In our results, proofs
of zero-knowledge in the random oracle will be deniable as well.

Existential Unforgeability. We consider the standard security notion of exis-
tential forgery under an adaptive chosen-message attack as defined by Gold-
wasser et al. [11] for classical digital signatures. This notion is similar to
Kurosawa-Heng [13] and is adapted as follows.
An undeniable signature scheme is secure against an existential forgery un-
der adaptive chosen-message attack if there exists no probabilistic polynomial
time algorithm F which wins the following game with a non-negligible prob-
ability.
Game: F receives a public key KS

p from (KS
p ,KS

s) ← SetupS(1k) and a
verifier’s key pair (KV

p ,KV
s) ← SetupV(1k). Then, F can query some cho-

sen messages to a signing oracle, some chosen pairs (m,σ) ∈ M× Σ to a
confirmation (and denial) protocol oracle and interact with it in a confirma-
tion (denial) protocol where the oracle plays the role of the signer. All these
queries must be polynomially bounded in k and can be sent adaptively. F
wins the game if it outputs a valid pair (m∗, σ∗) ∈M×Σ such that m∗ was
not queried to the signing oracle.
The success probability of F in this game is denoted by Succef-cma

F .

Invisibility. We use a similar definition as Kurosawa-Heng [13]. Consider first
a probabilistic polynomial time algorithm D called invisibility distinguisher

5

and the two following games with respect to a bit b.
Gameinv-cma-b. D receives KS

p from (KS
p ,KS

s) ← SetupS(1k) and a verifier’s
key pair (KV

p ,KV
s) ← SetupV(1k), it can query some chosen messages to a

signing oracle and some chosen message-signature pairs (m,σ) ∈M×Σ to
some oracles running the confirmation and denial protocols. After a given
time, D chooses one message m∗ ∈M which was not queried to the signing
oracle and submits it to the challenger. If b = 0, he sets σ∗ = Sign(m∗,KS

s).
Otherwise, σ∗ is picked uniformly at random in Σ. D receives σ∗. After
that, the distinguisher can query the signing, confirmation, and denial oracles
again provided that m∗ is not a query of the signing oracle and (m∗, σ∗) is
not a query of the confirmation or denial protocols. Finally, D outputs a
guess bit b′.

We define the advantage of the distinguisher as follows

Advinv-cma
D :=

∣∣∣Pr
[
b′ = 1 in Gameinv-cma-1

]
− Pr

[
b′ = 1 in Gameinv-cma-0

]∣∣∣ ,

where probabilities are over the random tapes of the involved algorithms. An
undeniable signature scheme is said to be invisible under a chosen-message
attack if there exists no probabilistic polynomial time algorithm D such that
the advantage Advinv-cma

D is non-negligible.

Note that this definition is similar to that of Galbraith et al. [8] except
that the distinguisher is not allowed to query m∗ to the signing oracle in our
definition. The invisibility notion of Galbraith et al. cannot be satisfied when the
signature is deterministic (which is the case for MOVA). This will be discussed
in Remark 6.

4 MOVA Scheme

In this section, we present the scheme proposed in [17] as well as the underlying
principles. This scheme generalizes the MOVA scheme [18] proposed earlier in
2004 in a very natural way and therefore will be called MOVA as well.

4.1 Preliminaries

We first recall some definitions, useful lemmas, and mathematical problems
from [17] related to the interpolation of group homomorphisms.

Let G and H be two Abelian groups. Given S := {(x1, y1), . . . , (xs, ys)} ⊆
G ×H, we say that the set of points S interpolates in a group homomorphism
if there exists a group homomorphism f : G −→ H such that f(xi) = yi for
i = 1, . . . , s. We say that a set of points B ⊆ G × H interpolates in a group
homomorphism with another set of points A ⊆ G×H if A∪B interpolates in a
group homomorphism.

6

Lemma 2 ([17]). Let G, H be two finite Abelian groups. We denote by d the
order of H and by p the smallest prime factor of d.

1. Let x1, . . . , xs ∈ G which span a subgroup denoted by G′. The following
properties are equivalent. In this case, we say that x1, . . . , xs H-generate G.
(a) For all y1, . . . , ys ∈ H, there exists at most one group homomorphism

f : G −→ H such that f(xi) = yi for i = 1, . . . , s.
(b) G′ + dG = G.

2. Let x1, . . . , xs ∈ G which H-generate G. The mapping g : G×Zs
d → G which

is defined by g(r, a1, . . . , as) := dr + a1x1 + · · ·+ asxs is balanced.
3. Given a set of s points S = {(x1, y1), . . . , (xs, ys)}, such that x1, . . . , xs H-

generate G. We assume that there exists a function f : G −→ H such that

ρ := Pr
(r,a1,...,as)∈U G×Zs

d

[f(dr + a1x1 + · · ·+ asxs) = a1y1 + · · ·+ asys] >
1
p
.

The set of points S interpolates in a group homomorphism.

Although, our treatment uses arbitrary G, H, d, p, the implementation anal-
ysis of [16] suggests that parameters G = Z∗n (for n product of two primes),
d = p = 2 lead to the most efficient protocols for the signer. The homomor-
phisms are the Legendre symbols in G.

n-S-GHI Problem (Group Homomorphism Interpolation Prob. [17])
Parameters: Two Abelian groups G and H, a set of s points S ⊆ G×H,

and n ∈ N.
Instance Generation: n elements x1, . . . , xn ∈U G are picked uni-

formly at random.
Problem: Find y1, . . . , yn ∈ H such that {(x1, y1), . . . , (xn, yn)} inter-

polates with S in a group homomorphism.
The success probability of an n-S-GHIP solver A will be denoted by
Succn-S-GHIP

A .

n-S-GHID Problem (n-S-GHI Decisional Problem)
Parameters: Two Abelian groups G and H, a set of s points S ⊆ G×H

and n ∈ N.
Instance Generation: The instance T is generated according to one

of the two following ways and is denoted T0 or T1 respectively. T0 is a
set of points {(x1, y1), . . . , (xn, yn)} ∈ (G×H)n picked uniformly at
random such that it interpolates with S in a group homomorphism.
T1 is picked uniformly at random in (G×H)n.

Problem: Decide whether the instance T is of type T0 or T1.
The advantage of an n-S-GHID distinguisher D is given by

Advn-S-GHID
D := |Pr[b = 0 | T is of type T0]− Pr[b = 0 | T is of type T1]| ,

where b denotes the output bit of D.

7

The S-GHI (resp. S-GHID) problem defined in [17] corresponds to the 1-S-GHI
(resp. 1-S-GHID) problem. We consider the n-S-GHI and n-S-GHID problems
for sets S which interpolate in a unique group homomorphism. Hence, S defines
a homomorphism. The n-S-GHI problem consists in computing it on n elements.
The n-S-GHID problem consists in deciding whether a set of points T is in its
graph.

4.2 Interactive Proofs

The original version of the MOVA scheme makes use of two 4-move interactive
proofs, namely one for the confirmation protocol and one for the denial protocol.
In the first proof, a prover proves that a set of points interpolates in a group
homomorphism known by himself. In the second one, the prover knows a group
homomorphism which interpolates in a set of points S and proves that a sec-
ond set of points T does not interpolate in this group homomorphism. These
two proofs, taken from [17], are given below. Again, G, H denote two Abelian
groups and d := |H| is the order of H with smallest prime factor p. The group
homomorphism which is known by the prover is denoted by f . The security
parameter of the following proofs is an integer denoted by `.

GHIproof`(S)
Parameters: G,H, d
Input: `, S = {(g1, e1), . . . , (gs, es)} ⊆ G×H
1: The verifier picks ri ∈U G and ai,j ∈U Zd uniformly at random

for i = 1, . . . , ` and j = 1, . . . , s. He computes ui = dri + ai,1g1 +
· · · + ai,sgs and wi = ai,1e1 + · · · + ai,ses for i = 1, . . . , `. He sends
u1, . . . , u` to the prover.

2: The prover computes vi = f(ui) for i = 1, . . . , `. He sends to the
verifier a commitment to v1, . . . , v`.

3: The verifier sends all ri’s and ai,j ’s to the prover.
4: The prover checks that the ui’s computations are correct. He then

opens his commitment.
5: The verifier checks that vi = wi for i = 1, . . . , `.

coGHIproof`(S, T)
Parameters: G,H, d, p
Input: `, S = {(g1, e1), . . . , (gs, es)}, T = {(x1, z1), . . . , (xt, zt)}
1: The verifier picks ri,k ∈U G, ai,j,k ∈U Zd, and λi ∈U Zp uniformly

at random for i = 1, . . . , `, j = 1, . . . , s, k = 1, . . . , t. He computes
ui,k := dri,k +

∑s
j=1 ai,j,kgj + λixk and wi,k :=

∑s
j=1 ai,j,kej + λizk.

Set u := (u1,1, . . . , u`,t) and w := (w1,1, . . . , w`,t). He sends u and w
to the prover.

2: The prover computes vi,k := f(ui,k) and yk := f(xk) for i = 1, . . . , `,
k = 1, . . . , t. Since wi,k − vi,k = λi(zk − yk), he should be able1

1 Note that this requires to select H in which one can extract discrete logarithms lying
in the restricted set {0, 1, . . . , p − 1}. In practice, this may not be a problem since
we prefer p = 2 as shown in [16].

8

to find every λi if the verifier is honest since zk 6= yk for at least
one k. Otherwise, he sets λi to a random value. He then sends a
commitment to λ = (λ1, . . . , λ`) to the verifier.

3: The verifier sends all ri,k’s and ai,j,k’s to the prover.
4: The prover checks that u and w were correctly computed. He then

opens the commitment to λ.
5: The verifier checks that the prover could find the right λ.

In the original article [17], a 2-move variant for these two protocols was sug-
gested without a proof. The variant is achieved by removing the two messages
sent in the middle of the protocol for achieving the zero-knowledge property
through the commitment scheme. In order to maintain zero-knowledge, the ver-
ifier sends a kind of commitment on a seed which generates the challenges to the
prover. This commitment can only be opened by the prover after this one solved
the challenges. We notably modify the original 2-move protocols by adding a
trapdoor one-way permutation with associated secret key KV

s . Namely, we con-
sider the permutation TPOWKV

p
(·) and its inverse TPOWKV

s
(·)−1. We denote

Succinv-tp
A the probability that an adversary A can compute TPOW−1

KV
s

(y) given
a random y, without knowing KV

s . For the sake of simplicity, we use the same
notation for both protocols. The 2-move variant of GHIproof is given here.

2-GHIproof`(S)
Parameters: G,H, d
Input: `, S = {(g1, e1), . . . , (gs, es)} ⊆ G×H
1: The verifier picks seedC ∈U {0, 1}kc uniformly at random, and by

applying a pseudorandom generator GenC on this seed, generates
values ri ∈ G and ai,j ∈ Zd for i = 1, . . . , ` and j = 1, . . . , s. He
computes ui = dri + ai,1g1 + · · · + ai,sgs, wi = ai,1e1 + · · · + ai,ses

for i = 1, . . . , `, and ϑc = TPOWKV
p

(seedC). Using a cryptographic
hash function Hc : {0, 1}∗ → {0, 1}kc , the verifier computes hc :=
Hc(w1, . . . , w`)⊕seedC. He sends u1, . . . , u`, hc and ϑc to the prover.

2: The prover computes the values vi = f(ui) for i = 1, . . . , ` and
seedC′ = Hc(v1, . . . , v`)⊕ hc. He checks that ϑc = TPOWKV

p
(seedC′)

and that GenC(seedC′) generates values ai,j ’s and ri’s such that
ui := dri + ai,1g1 + · · ·+ ai,sgs for i = 1, . . . , `. He sends seedC′ to
the verifier.

3: The verifier checks that seedC′ = seedC.

The interactive proof coGHIproof can be transformed in a 2-move pro-
tocol in a similar way. Namely, the verifier picks seedD ∈ {0, 1}kd , and uses a
pseudorandom generator GenD to generate the ri,k’s, ai,j,k’s, and λi’s, and ϑd =
TPOWKV

p
(seedD). He then sends the corresponding u, w, hd := Hd(λ1, . . . , λ`)⊕

seedD, and ϑd, where Hd : {0, 1}∗ → {0, 1}kd is a cryptographic hash func-
tion. In step 2 of the protocol, the prover retrieves seedD′, and checks whether
ϑd = TPOWKV

p
(seedD′) and GenD(seedD′) generates the right u, w. Then, he

sends seedD′.

9

Note that the complexity of both protocols are comparable to their 4-move
variants.

4.3 MOVA Description

Below, we briefly present the MOVA scheme. For a more detailed description,
we refer to [17].

Setup. The signer chooses two Abelian groups Xgroup and Ygroup and a se-
cret group homomorphism Hom : Xgroup → Ygroup. He picks seedK ∈
{0, 1}ks and using a pseudorandom generator GenK generates Lkey values
Xkey1, . . . , XkeyLkey ∈ Xgroup. Then, he computes Ykeyi := Hom(Xkeyi)
for i = 1, . . . , Lkey.

Public Key. KS
p := (Xgroup, Ygroup, d, seedK, (Ykey1, . . . , YkeyLkey),para),

where the set para = (Lkey, Lsig, Icon, Iden, kc, kd, ks) is composed of integer
parameters.

Secret Key. KS
s := Hom.

The main goal of the setup is to ensure that the points (Xkeyi,Ykeyi)’s
uniquely characterize Hom to avoid that several secret keys correspond to the
same public key. This is necessary to guarantee the non-repudiation of the sig-
nature scheme. For this, one can either put many enough points or produce
an interactive or non-interactive zero-knowledge proof of unique interpolation.
These additional setup variants are described in [17]. In fact, the different setup
variants ensure that Xkey1, . . . , XkeyLkey Ygroup-generate Xgroup. In this case,
we say that the public key is valid.

Signature Generation. Let m ∈ {0, 1}∗ be a message. Applying a pseudo-
random generator GenS on the message m, the signer generates Lsig values
Xsig1, . . . , XsigLsig ∈ Xgroup. He then computes Ysigi := Hom(Xsigi) for
i = 1, . . . , Lsig. The signature σ is (Ysig1, . . . , YsigLsig).

Confirmation Protocol. Given a message-signature pair (m,σ) as input and
an integer Icon a security parameter, the signer (prover) and the verifier
retrieve the values Xkeyi’s, Xsigj ’s from the message and the public key.
The signer checks the validity of the signature. If this one is valid, the signer
and the verifier run GHIproof Icon(S) on the set

S = {(Xkeyi, Ykeyi)|i = 1, . . . , Lkey} ∪ {(Xsigj , Ysigj)|j = 1, . . . , Lsig}.
Otherwise, the signer aborts.

Denial Protocol. Given an alleged invalid message-signature pair (m,σ) as
input and an integer Iden a security parameter, we denote the signature
σ = (Zsig1, . . . , ZsigLsig). The signer and the verifier retrieve the Xkeyi’s
and Xsigj ’s. The signer checks the invalidity of (m, σ). If this one is really
invalid, they run the protocol coGHIproof Iden(S, T) on the sets

S = {(Xkeyi, Ykeyi)|i = 1, . . . , Lkey} T = {(Xsigj , Zsigj)|j = 1, . . . , Lsig}.
The 2-move version of MOVA is exactly as above except that GHIproof and

coGHIproof are replaced by 2-GHIproof and 2-coGHIproof respectively.

10

5 Security of the 2-Move MOVA Scheme

Here, we prove that the 2-move modified version of the MOVA scheme satisfies
the security properties mentioned in Section 3. The proofs of resistance against
forgery attacks and invisibility were inspired from [13].

Theorem 3. Let S = {(Xkey1, Ykey1), . . . , (XkeyLkey,YkeyLkey)} and e denote
the natural logarithm base. Assuming that GenC, GenS, GenD, Hd, and Hc are
random oracles, that signer’s public key is valid, and that TPOW is a trapdoor
one-way permutation, the MOVA scheme with 2-move confirmation and denial
protocols satisfies the following security properties.

1. The confirmation (resp. denial) protocol is complete.
2. Let p be the smallest prime factor of d. The confirmation (resp. denial)

protocol is sound: for any invalid (valid) message-signature pair, any cheat-
ing signer S∗ limited to qHc

(resp. qHd
) queries to Hc (resp. Hd), is such

that the probability Succsd-con
S∗ < Succinv-tp + qHc

p−Icon (resp. Succsd-den
S∗ <

Succinv-tp + qHd
p−Iden), where Succinv-tp is the maximum of Succinv-tp

A among
all adversaries A which have similar complexity as S∗.

3. The confirmation (resp. denial) protocol is perfect non-transferable.
4. The confirmation (resp. denial) protocol is statistical black-box straight-line

zero-knowledge.
5. Assume that for any solver B with a given complexity, we have

SuccLsig-S-GHIP
B ≤ ε.

Then, any forger F with similar complexity using qS signing queries and qV

queries to the confirmation/denial oracle wins the existential forgery game
under an adaptive chosen-message attack with a probability

Succef-cma
F ≤ e(1 + qS)(1 + qV)ε.

6. Assume that for any algorithm B with a given complexity, we have

AdvLsig-S-GHID
B ≤ ε and SuccLsig-S-GHIP

B ≤ ε′.

Then, any distinguisher D with similar complexity using qS signing queries
and qV queries to the confirmation/denial oracle wins the invisibility game
under a chosen-message attack with advantage

Advinv-cma
D ≤ e(1 + qS)(ε + 2e(1 + qV)ε′).

Remark 4. The soundness and zero-knowledge of the confirmation and denial
protocols as well as the invisibility and the resistance to existential forgery at-
tacks hold in the random oracle model.

Remark 5. Similarly to [14], the efficiency of the security reduction for the ex-
istential forgery can be improved (factor (1 + qV)−1 is removed) by replacing
GHI problem by its gap variant [20]. This problem consists in solving the GHI
problem using an access to an oracle which solves the GHID problem. This one
helps to simulate the confirmation and denial oracles.

Proof. Below we prove Theorem 3. Completeness is omitted since it is obvious.

11

Soundness of Confirmation. Let S∗ be a cheating prover who wants to confirm
the validity of an invalid signature σ = (Zsig1, . . . , ZsigLsig). Note that S∗ is fed
with the signer secret key KS

s . Without loss of generality, we can assume that
S∗ always responds correctly to the verifier whenever he queries seedC to GenC.
Indeed, he can check that seedC is the preimage of ϑc by TPOW and answer
seedC to the challenge if correct. (With an honest verifier, there is no need to
check whether the challenge is valid.) Hence, the verifier always accepts when the
prover queries seedC to GenC. Similarly, we can assume that S∗ always responds
correctly to the verifier whenever he queries the right w to Hc because he can
deduce seedC from hc afterwards. Note that when S∗ interacts with an honest
verifier, the verifier only accepts if S∗ outputs seedC.

We transform S∗ into an algorithm to invert the trapdoor permutation as
follows.

1. We receive a random challenge ϑc, whose preimage by TPOW is denoted
seedC.

2. We generate the key material for the MOVA signature and generate some
random values ri’s and ai,j ’s. We deduce some ui’s and wi’s and pick a
random hc. Then (u, hc, ϑc) is a challenge for the prover. We simulate GenC
as follows: for any query except seedC (we can check whether a value is
seedC by checking that its image by TPOW is ϑc) we simulate a random
oracle as usual i.e., we maintain a list of elements queried to GenC with
corresponding answers and simulate according to this list. If the query is
new, we simply pick the answer at random and add the pair in the list.
For the query seedC we stop the overall simulation and yield seedC: the
inversion of ϑc succeeded. We simulate Hc as follows: for any query except
w = (w1, . . . , wIcon) we simulate a random oracle (like for GenC). For the
query w we stop: the inversion of ϑc failed.

3. We run S∗ according to our simulation rules. If S∗ outputs some value, we
check whether it is seedC. If it is, we output it, otherwise we fail.

The algorithm succeeds to invert the trapdoor permutation at the condition
that either (event A) S∗ succeeds without even querying seedC to GenC nor w
to Hc, or (event B) that S∗ queries seedC to GenC without querying w to Hc

beforehand. Let C be the event that S∗ queries w to Hc before querying seedC
to GenC. Since the simulation is perfect, Pr[A∪B]+Pr[C] is the probability that
S∗ passes the protocol with an honest verifier. We have Pr[A ∪ B] ≤ Succinv-tp.
Below we show an upper bound for Pr[C]. To this, we consider a simulator B
which plays with S∗ to win the following game:
Game: A challenger picks elements ri’s and ai,j ’s uniformly at random and
compute ui = dri +

∑Lkey
j=1 ai,jXkeyj +

∑Lkey+Lsig
j=Lkey+1 ai,jXsigj−Lkey and wi :=∑Lkey

j=1 ai,jYkeyj +
∑Lkey+Lsig

j=Lkey+1 ai,jZsigj−Lkey. The simulator B receives the ui’s
and wins the game if he finds all the values wi’s.
B simply forwards the received challenges ui’s and picks hc and ϑc uniformly

at random in {0, 1}kc . B simulates the oracle Hc as above, except that he guesses
when the wi’s are queried. For this, he just picks an integer ` ∈ {1, . . . , qHc}

12

uniformly and stops the simulation at the `th query made to Hc. The simulator
then answers the values wi’s. Note that S∗ cannot query seedC to GenC when
event C occurs. The simulation is perfect in the C case provided that ` is correctly
guessed. Thus, we have Pr[D] ≥ 1/qHc

· Pr[C], where D denotes the event of
winning the above game. By the assertion 3 of Lemma 2, Pr[D] ≤ p−Icon. Thus,
Pr[C] ≤ qHcp

−Icon. So, the confirmation cannot succeed with probability larger
than Succinv-tp + qHc

p−Icon.

Soundness of Denial. This proof works in a very similar way as for the confir-
mation. The only difference is that we replace GenC by GenD, Hc by Hd, Icon
by Iden, kc by kd, seedC by seedD.

Non-Transferability of Confirmation. We describe a simulator B interacting
with Ṽ. First, B launches Ṽ and receives the first message (which should be
u = (u1, . . . , uIcon), hc, and ϑc). If (m,σ) is valid, the simulator computes
seedC′ = TPOW−1

KV
s

(ϑc) and using GenC generates coefficients a′ij and r′i and
corresponding u′i and w′i for i = 1, . . . , Icon and j = 1, . . . , Lkey + Lsig. Then, B
checks whether u′i = ui for i = 1, . . . , Icon, seedC′ = Hc(w′1, . . . , w

′
Icon) ⊕ hc. If

it is the case, B outputs the transcript (hc, w, ϑc, seedC′). Otherwise, it outputs
(hc, w, ϑc, abort). If (m,σ) is invalid, the simulator outputs abort. Note that an
honest signer would check exactly the same equalities (in a different way) and
would answer exactly in the same way. Hence, the non-transferability is perfect.

Non-transferability of Denial. This proof is similar.

Straight-Line Zero-Knowledge of Confirmation. If V∗ is given KV
s , the simula-

tion can be done perfectly as for the non-transferability. Now, we consider that
V∗ (and the simulator B) is not given KV

s . B runs the verifier V∗ and looks
at the queries made by V∗ to the oracle GenC. B puts these qGenC queries
seedCk for 1 ≤ k ≤ qGenC as well as the corresponding answers of GenC in
memory. The simulator then receives the first message M of V∗. If this one
has not a correct format, the simulator outputs the transcript (M, abort). Oth-
erwise, the simulator checks whether one answer among those queries seedCk’s
made to GenC generates the challenges ui’s correctly and the image of this
query by TPOW is equal to ϑc. If it is not the case, B outputs the transcript
(u1, . . . , uIcon, hc, ϑc, abort). Otherwise, the simulator is able to compute the right
wi’s from this answer (the right ri’s and ai,j ’s) using the homomorphic property
of Hom, namely wi = Hom(ui) =

∑Lkey
j=1 ai,jYkeyj +

∑Lkey+Lsig
j=Lkey+1 ai,jYsigj−Lkey

for i = 1, . . . , Icon. From the wi’s, B computes seedC∗ := hc⊕Hc(w1, . . . , wIcon)
and checks whether seedC∗ generates the right ri’s and ai,j ’s. In the positive case,
B outputs the transcript (u1, . . . , uIcon, hc, ϑc, seedC∗). In the negative case, it
outputs the following transcript (u1, . . . , uIcon, hc, ϑc, abort).

It remains to show that the two transcript distributions are statistically indis-
tinguishable. When the first message has not a correct format, the two transcripts
are clearly identical. Let consider the case where the verifier did not query any

13

seedCk which produces the challenges ui’s and whose image by TPOW leads to
ϑc. In this case, the honest prover will not abort the protocol only if he retrieves
a seedC = H(w1, . . . , wIcon) ⊕ hc which generates the challenges ui’s and ϑc.
This occurs only if the verifier V∗ was able to guess that the output values of
the query seedC to the oracle GenC generate the right ri’s and aij ’s. Since GenC
is a random oracle, no polynomial time verifier V∗ can succeed to do that with
a non-negligible probability. We still have to consider the case where the verifier
queried a seedCk which produces the challenges ui’s and ϑc. We see that the two
transcripts are always identical, since the simulator clearly knows the answer of
the honest prover by learning the right wi’s. Therefore, we can conclude that
the two transcript distributions are statistically indistinguishable.

Straight-Line Zero-Knowledge of Denial. This proof is similar.

Unforgeability. Let F be a forger who succeeds to existentially forge a signa-
ture under an adaptive chosen-message attack with a non-negligible probabil-
ity ε. We will construct an algorithm B which solves the Lsig-S-GHI problem
with S := {(Xkey1, Ykey1), . . . , (XkeyLkey, YkeyLkey)} using the forger F and
KV

s . At the beginning, B receives the challenges x1, . . . , xLsig ∈ Xgroup of the
Lsig-S-GHI problem. Then, B runs the forger and simulates the queries to the
random oracle GenS, qS queries to the signing oracle Sign and qV queries to the
denial/confirmation oracle Ver. We can assume that all messages sent to Sign
resp. Ver were previously queried to GenS (since the oracle Sign resp. Ver has to
make such queries anyway). B simulates the oracles GenS and Sign as follows:

GenS. For each message m queried to GenS, B maintains a list of each mes-
sage and corresponding answer (m,Xsig1, . . . , XsigLsig). If the message was
already queried, B outputs the corresponding answer in the list. Otherwise,
he picks ai,j ∈U Zd and ri ∈U Xgroup uniformly at random for 1 ≤ i ≤ Lsig,
1 ≤ j ≤ Lkey. With probability q, he answers Xsigi := dri+

∑Lkey
j=1 ai,jXkeyj

for i = 1, . . . , Lsig. We call it type-1 answer. With probability 1− q, the an-
swer is Xsigi := dri + xi +

∑Lkey
j=1 ai,jXkeyj for i = 1, . . . , Lsig. We call it

type-2 answer. For each message, B keeps the coefficients ai,j ’s and ri’s and
answer type in memory. Note that the simulation is perfect by the assertion 2
of Lemma 2, since the public key is valid.

Sign. For a message m, if the answer to the GenS query of m was of type-1,
then B answers Ysigi :=

∑Lkey
j=1 ai,jYkeyj for i = 1, . . . , Lsig. Otherwise, it

aborts the simulation.

Let (mi, σi) denote the ith query to Ver for 1 ≤ i ≤ qV and (mqV +1, σqV +1)
denote the F output. In order to simulate the answers of the queries made to
Ver, B guesses the smallest i such that (mi, σi) is a valid forged pair (i.e., m
was not queried to Sign). To this, B simply picks ` uniformly at random in
{1, . . . qV + 1}. B deals with the ith query as follows:

i < `. To any query (mi, σi), B checks whether mi was submitted to Sign. If
it is the case, B is able to decide whether (mi, σi) is valid and simulates

14

the appropriate protocol. Otherwise, B guesses that (mi, σi) is invalid and
simulate the appropriate protocol. The simulation is done as the simulator in
the proof of non-transferability of the confirmation (resp. denial) protocol.

i = `. Let (m`, σ`) := (m`, Ysig1, . . . , YsigLsig). If the corresponding Xsigi’s were
of type-1, B aborts. Otherwise, when ` was correctly guessed Ysigi = yi +∑Lkey

j=1 ai,jYkeyj and B is able to deduce the yi’s of the Lsig-S-GHI problem.

It remains to compute the probability that B retrieves the yi’s and did not abort.
This event occurs if B is able to simulate all Sign queries, guess the right ` and
use the message m` to deduce the yi’s. Therefore, Pr[B succeeds|F succeeds] =
qqS (1− q)/(qV +1). As for the full-domain hash technique [7] and as in [13], the
optimal qopt = qS/(qS + 1). Thus, the success probability is greater or equal to
(1/e(1 + qS)(1 + qV))ε.

Invisibility. Let D be a distinguisher which breaks the invisibility of the MOVA
scheme with an advantage ε. We construct an algorithm B which solves the Lsig-
S-GHID problem by using D and KV

s . At the beginning, B is challenged with
a tuple {(x1, y1), . . . , (xLsig, yLsig)} ∈ (Xgroup×Ygroup)Lsig for which it has to
decide whether Hom(xi) = yi for all 1 ≤ i ≤ Lsig or if this tuple was picked at
random. Like for the proof of the existential forgery, the simulator B runs D and
simulates the queries to the random oracle GenS, qS queries to the signing oracle
Sign and the queries to the denial/confirmation oracle Ver. We can assume that
each message queried to Sign or Ver was previously queried to the random oracle
GenS. We assume that no query m to Ver was submitted to Sign beforehand.
(Otherwise, we can just simulate them with KV

s .) Let Forge be the event in which
D sends a valid message-signature pair to Ver. We first remove all instances for
which the event Forge occurs. So, we can now assume that D never submits any
valid pair (m, σ) to Ver such that m was not previously submitted to Sign. B
simulates the oracles just like in the proof of unforgeability with ` = qV + 1 (we
excluded valid forged pairs).

After a given time, the distinguisher D sends a message m∗ to the challenger
of the invisibility game which is simulated by B. We can assume that m∗ was
queried to GenS (otherwise B simulates a new query). If the answer of m∗ to
GenS was of type-1, B aborts the simulation. Otherwise, it sends the challenge
signature (Ysig∗1, . . . , Ysig∗Lsig) where Ysig∗i := yi +

∑Lkey
j=1 ai,jYkeyj for 1 ≤ i ≤

Lsig. Then, D continues to query the oracles which are simulated by B as above.
Finally, D outputs a guess bit b′. The simulator B outputs the same bit b′ as

guess bit to the Lsig-S-GHID challenger or a random bit when B aborted.
Using the homomorphic property of Hom, we deduce that the set {(xi, yi)}Lsig

i=1

interpolates in a group homomorphism with the set of points S if and only if
(m∗, Ysig∗1, . . . , Ysig∗Lsig) is a valid message-signature pair. Hence, when the sim-
ulator does not abort and the event Forge does not occur, B perfectly simulates
the invisibility games. It remains to compute the advantage of B.

For a bit b, we denote Ab the probability event that B does not abort when
the challenge to B was of the form Tb (thus, B simulates the game Gameinv-cma-b

to D). Note that the probability Pr[A1] = Pr[A0] can be bounded in an optimal

15

way as in the proof of existential forgery attacks, namely, by choosing q ade-
quately we get Pr[A1] ≥ (1/e(1 + qS)). We now define the events Bb and Db

which occur when B and D respectively outputs the bit 0 when the challenge
was of the form Tb. Note that if Ab happens, both events Bb and Db occurs
simultaneously. Let us denote ε0 resp. ε1, the probability for D to output 0 in
the game Gameinv-cma-0 resp. Gameinv-cma-1. We now estimate Pr[B0|A0] and
Pr[B1|A1] with respect to ε0 and ε1. To this end, we notice that the event B0|A0

resp. B1|A1 occurs simultaneously with the event where D outputs 0 in the game
Gameinv-cma-0 resp. Gameinv-cma-1, provided that the event Forge does not occur.
Hence, applying the difference lemma of Shoup [22] leads to

|Pr[Bb|Ab]− εb| ≤ Pr[Forge]

for b = 0, 1. From this, we can deduce that Pr[B0|A0] ≥ ε0 − Pr[Forge] and
Pr[B1|A1] ≤ ε1 + Pr[Forge]. Without loss of generality, we can assume that
Pr[B0] ≥ Pr[B1]. The advantage of B is then equal to

Pr[B0]− Pr[B1] = Pr[¬A0] · (Pr[B0|¬A0]− Pr[B1|¬A1])
+ Pr[A0] · (Pr[B0|A0]− Pr[B1|A1]).

Since Pr[B0|¬A0] = Pr[B1|¬A1] = 1/2 and ε0− ε1 = Advinv−cma
D , we finally have

AdvLsig-S-GHID
B ≥ 1

(1 + qS)e

(
Advinv−cma

D − 2 Pr[Forge]
)

.

We can conclude by noting that Forge occurs with a probability bounded by
e(1 + qS)(1 + qV)ε′ by assertion 5. ¤

Remark 6. MOVA scheme can be made probabilistic so that the invisibility no-
tion defined in [8] is satisfied. To this, it suffices to append some randomness r
to the message to sign and to add r in the signature. The drawback is that the
signature enlarges.

Consequences for the Signature Parameters. One of the main advantage of
MOVA scheme as stated in [17] is the fully scalable signature size. It was argued
that one could potentially consider signatures of size of 20 bits, but the corre-
sponding security level was not precisely quantified. Namely, the efficiency of the
security reduction in [17] is not detailed and the security model did not consider
queries to the confirmation/denial oracle. Our security reduction provides a more
precise result. Assuming that any solver with same computational resource as a
given forger cannot solve Lsig-S-GHI problem with a probability significatively
greater than |Ygroup|−Lsig, the assertion 5 of Theorem 3 shows that we have
Succef-cma

F ≤ |Ygroup|−Lsige(qS + 1)(qV + 1). Note that the assumption can be
reached by scaling Xgroup adequately, namely without any modification of the
signature size. This is the case when Hom is the Legendre symbol (·/p) defined
on an RSA modulus n = pq. A signature size of Lsig ≥ 52 bits achieves a success
probability for the existential forgeability of at most 2−20 with qS = 210 and

16

qV = 220. Similarly, assuming that AdvLsig-S-GHID
B ≈ 0 for any B with similar

complexity as the invisibility distinguisher D, assertion 6 of Theorem 3 shows
that Advinv-cma

D ≈ 2e2qSqV 2−Lsig, which leads to Advinv-cma
D ≈ 2−18. Results for

the soundness can be obtained with Succinv-tp ≈ 0. For the 2-move verification
protocols, we can achieve a soundness probability of 2−20 with Icon = Iden = 60,
qHc = qHd

= 240.

6 Conclusion

We revisited a 2-move variant of the MOVA undeniable signature scheme which
was proposed without any proof. By using a trapdoor one-way permutation
adequately, we were able to make the verification protocols non-transferable. All
the other required security properties are thoroughly analyzed in the random
oracle model, thereby allowing to quantify the security of the different properties
in terms of the signature parameters. So, as far as we know, this is the first time
a provably secure undeniable signature scheme with 2-move confirmation and
denial protocols is obtained. This result shows that minimal number of moves in
an undeniable signature with interactive protocols can be reached in practice.

References

1. B. Barak, Y. Lindell, and S. P. Vadhan. Lower Bounds for Non-Black-Box Zero
Knowledge. In 44th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS ’03, pages 384–393. IEEE Computer Society, 2003.

2. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols. In 1st ACM Conference on Computer and Communications
Security, pages 62–73. ACM Press, 1993.

3. J. Boyar, D. Chaum, I. Damg̊ard, and T. P. Pedersen. Convertible Undeniable
Signatures. In Advances in Cryptology – CRYPTO ’90, volume 537 of Lecture
Notes in Computer Science, pages 189–205. Springer-Verlag, 1991.

4. J. Camenisch and M. Michels. Confirmer Signature Schemes Secure against Adap-
tive Adversaries. In Advances in Cryptology – EUROCRYPT ’00, volume 1807 of
Lecture Notes in Computer Science, pages 243–258. Springer-Verlag, 2000.

5. D. Chaum. Zero-Knowledge Undeniable Signatures. In Advances in Cryptology
– EUROCRYPT ’90, volume 473 of Lecture Notes in Computer Science, pages
458–464. Springer-Verlag, 1990.

6. D. Chaum and H. van Antwerpen. Undeniable Signatures. In Advances in Cryp-
tology – CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages
212–217. Springer-Verlag, 1990.

7. J.-S. Coron. On the Exact Security of Full Domain Hash. In Advances in Cryptology
– CRYPTO ’00, volume 1880 of Lecture Notes in Computer Science, pages 229–235.
Springer-Verlag, 2000.

8. S. D. Galbraith and W. Mao. Invisibility and Anonymity of Undeniable and Con-
firmer Signatures. In Topics in Cryptology – CT–RSA ’03, volume 2612 of Lecture
Notes in Computer Science, pages 80–97. Springer-Verlag, 2003.

9. R. Gennaro, H. Krawczyk, and T. Rabin. RSA-Based Undeniable Signatures. In
Advances in Cryptology – CRYPTO ’97, volume 1294 of Lecture Notes in Computer
Science, pages 132–149. Springer-Verlag, 1997.

17

10. O. Goldreich. Foundations of Cryptography, Volume I Basic Tools. Cambridge
University Press, 2001.

11. S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Se-
cure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

12. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and Their
Applications. In Advances in Cryptology – EUROCRYPT ’96, volume 1070 of
Lecture Notes in Computer Science, pages 143–154. Springer-Verlag, 1996.

13. K. Kurosawa and S.-H. Heng. 3-Move Undeniable Signature Scheme. In Advances
in Cryptology – EUROCRYPT ’05, volume 3494 of Lecture Notes in Computer
Science, pages 181–197. Springer-Verlag, 2005.

14. F. Laguillaumie and D. Vergnaud. Short Undeniable Signatures Without Random
Oracles: the Missing Link. In Progress in Cryptology – INDOCRYPT ’05, volume
3797 of Lecture Notes in Computer Science, pages 283–296. Springer-Verlag, 2005.

15. H. Lipmaa, G. Wang, and F. Bao. Designated Verifier Signature Schemes: Attacks,
New Security Notions and a New Construction. In Automata, Languages and
Programming: 32nd International Colloquium, ICALP ’05, volume 3580 of Lecture
Notes in Computer Science, pages 459–471. Springer-Verlag, 2005.

16. J. Monnerat, Y. A. Oswald, and S. Vaudenay. Optimization of the MOVA Undeni-
able Signature Scheme. In Progress in Cryptology – MYCRYPT ’05, volume 3715
of Lecture Notes in Computer Science, pages 196–209. Springer-Verlag, 2005.

17. J. Monnerat and S. Vaudenay. Generic Homomorphic Undeniable Signatures. In
Advances in Cryptology – ASIACRYPT ’04, volume 3329 of Lecture Notes in Com-
puter Science, pages 354–371. Springer-Verlag, 2004.

18. J. Monnerat and S. Vaudenay. Undeniable Signatures Based on Characters: How
to Sign with One Bit. In Public Key Cryptography – PKC ’04, volume 2947 of
Lecture Notes in Computer Science, pages 69–85. Springer-Verlag, 2004.

19. W. Ogata, K. Kurosawa, and S.-H. Heng. The Security of the FDH Variant of
Chaum’s Undeniable Signature Scheme. In Public Key Cryptography – PKC ’05,
volume 3386 of Lecture Notes in Computer Science, pages 328–345. Springer-
Verlag, 2005. Extended version available on: Cryptology ePrint Archive, Report
2004/290, http://eprint.iacr.org/.

20. T. Okamoto and D. Pointcheval. The Gap-Problems: A New Class of Prob-
lems for the Security of Cryptographic Schemes. In Public Key Cryptography
– PKC ’01, volume 1992 of Lecture Notes in Computer Science, pages 104–118.
Springer-Verlag, 2001.

21. R. Pass. On Deniability in the Common Reference String and Random Oracle
Model. In Advances in Cryptology – CRYPTO ’03, volume 2729 of Lecture Notes
in Computer Science, pages 316–337. Springer-Verlag, 2003.

22. V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

18

