Generating Anomalous Elliptic Curves Erratum

Franck Leprévost ${ }^{\text {a }}$, Jean Monnerat ${ }^{\text {b,1 }}$, Sébastien Varrette ${ }^{\text {a }}$, Serge Vaudenay ${ }^{\text {b }}$
${ }^{\text {a }}$ Université du Luxembourg, LIASIT, 162 A, Avenue de la Faïencerie, L-1511 Luxembourg
${ }^{\mathrm{b}}$ EPFL, LASEC, CH-1015 Lausanne, Switzerland

This document provides an erratum of the article "Generating Anomalous Elliptic Curves" which was published in Information Processing Letters, vol. 93, pp. 225-230, Elsevier, 2005. At page 229, a mistake occured in the curve given in Example 1. A digit is missing in the coefficient μ which leads to a nonanomalous curve. Below, we rewrite Example 1 correctly with right coefficients as well as new points P and Q of the curve.

Example 1. For $m=257743850762632419871495, p=11 m(m+1)+3$ is a prime number of length 160 bits. Then, the elliptic curve E over \mathbf{F}_{p} is defined by the equation $y^{2}=x^{3}+\mu x+\nu$, where

$$
\mu=425706413842211054102700238164133538302169176474
$$

and

$$
\nu=203362936548826936673264444982866339953265530166,
$$

and one checks that $E\left(\mathbf{F}_{p}\right)=p$, and the curve E is anomalous over \mathbf{F}_{p}. Now, if

$$
P=(13,465544273814283170955860814979566909058839521305) \in E\left(\mathbf{F}_{p}\right)
$$

and

$$
Q=(17,173827014976148521051073746232750578872372755801) \in E\left(\mathbf{F}_{p}\right),
$$

[^0]the method shows that $Q=n P$, with
$$
n=615421018442001462563539981905852134696556435295 .
$$

Acknowledgements. The authors would like to thank Jan steffen Müller for pointing out this mistake.

[^0]: Email addresses: Franck.Leprevost@univ.lu (Franck Leprévost), Jean.Monnerat@epfl.ch (Jean Monnerat), Sebastien.Varrette@imag.fr (Sébastien Varrette), Serge.Vaudenay@epfl.ch (Serge Vaudenay).
 1 Supported in part by a grant of the Swiss National Science Foundation, 200021101453/1.

