
On some Weak Extensions of AES and BES

Jean Monnerat ? and Serge Vaudenay

EPFL, Switzerland
http://lasecwww.epfl.ch

Abstract. In 2002, Murphy and Robshaw introduced an extension BES
of AES and argued this could compromise the security of AES. We intro-
duce here two block-ciphers CES and Big-BES that are some extensions
of the AES and BES respectively in the spirit of Hensel lifting extensions.
They are defined similarly to the AES respectively BES except that every
operations are performed in a ring structure including the field GF (28).
We show that the AES and BES can be embedded in their extensions.
More precisely, by restricting these extensions on a given subset, we ob-
tain a fully equivalent description of the AES and BES. Furthermore,
we show that these natural extensions are trivially weak by describing
a cryptanalysis of them despite it leads to no consequence about the
security of AES or BES. This shows that (except the nice mathematical
construction) the Murphy-Robshaw extension might be pointless.

Key words: AES, BES, Rijndael.

1 Introduction

Since the publication of the Advanced Encryption Standard (AES), many at-
tempts have been performed to find some security flaws in its design. It is well-
known that the AES resists to some classical attacks such as the linear crypt-
analysis [9] and the differential cryptanalysis [3]. Recently, the attention of some
researchers has focused on some new ideas based on algebraic concepts [1, 2, 5,
7, 11]. This is particularly due to the fact that the S-box of the AES is algebraic.

The block-cipher BES has been proposed by Sean Murphy and Matthew J.B.
Robshaw in Crypto 2002 [11]. BES has a 128 bytes message space and key space
and can be regarded as an extension of the 128 bits version of the AES. Namely,
by restricting BES on a special subset of the state space, we obtain a cipher that
is fully equivalent to the AES. One of the advantages of BES is to describe the
AES with basic operations in GF (28).

Recently, people investigated the implication of an other extension type (the
Hensel lifting) in public key cryptography (Okamoto-Uchimaya [13], Catalano
et al. [4]). It was demonstrated that some extensions are indeed weak. Similar
ideas were used in order to solve the Discrete Logarithm Problem on the elliptic
? Supported in part by a grant of the Swiss National Science Foundation, 200021-

101453/1.

curves of trace one, see Smart [15] and Satoh [14]. Here we demonstrate that
symmetric-key cryptography have similar properties.

In this paper, we introduce an extension of BES called Big-BES by replacing
the underlying field GF (28) by a commutative ring R in which GF (28) can
be embedded in a very natural way. We show also that restricting Big-BES on
some subsets of the state vector space provides a cipher fully equivalent to BES.
Using some linear properties occurring in Big-BES, we can cryptanalyze it quite
efficiently. We also apply a similar construction to the AES by defining the block-
cipher CES and show that CES can be broken by an identical cryptanalysis. From
this work, we can deduce first that replacing the underlying field by a similar
structure can have a destructive impact on the security of a block-cipher even
if this one is an extension. Secondly, despite of an efficient cryptanalysis, this
leads to no consequence about the security of BES and AES. So, it seems that a
natural extension of AES such as BES may be weak without compromising the
security of AES. This comes from the strong properties required to the extensions
of a given cipher e.g. AES.

In section 2 we recall the descriptions of AES and BES. Section 3 is devoted
to the introduction of Big-BES that we cryptanalyze in section 4. We adapt
this work to AES in section 5 by defining a new block-cipher called CES. Then,
section 6 contains a discussion of the choice of the extension of the field GF (28).
Finally, section 7 concludes this article.

2 Background on AES and BES

The operations involved in AES and BES are essentially performed in the fi-
nite field F = GF (28) = GF (2)[X]/(p(X)), where p is the following irreducible
polynomial p(X) = X8+X4+X3+X+1. A byte will be then considered as an el-
ement of F and a plaintext of AES resp. BES will be an element of F16 resp. F128.

Inversion. In the two ciphers, we use an inversion map that is defined as the
normal inversion in F for non-zero elements and that maps zero to itself, i.e. for
a ∈ F we have

a(−1) := a254 =

{
a−1 if a 6= 0
0 if a = 0.

For a vector b of a space Fn, b(−1) means a componentwise inversion, i.e.

b(−1) := (b(−1)
1 , . . . , b(−1)

n).

2.1 The AES Structure

In this subsection, we recall roughly the structure of the AES and we will provide
a description in which all operations are performed in the field F. We consider
here the 128 bits version with 10 rounds and we omit the key schedule. For a
detailed version of the AES, we refer the reader to FIPS-197 [12] and the book
of Daemen and Rijmen [6].

AES is a block cipher that consists in an iteration of some round transforma-
tions on the plaintext. The plaintext, the subkeys and the ciphertext are some
elements of the state space A := F16 of the AES. Except for an initial subkey
addition and the last round, all the rounds are of the following form:

Round of AES. We denote the input of the round as x = (x1, · · · , x16) ∈ F16.
We describe the successive transformations performed in the round below.

1. Inversion. x 7→ y = x(−1) the componentwise inversion in each byte of the
state vector.

2. GF(2)-linear function. We regard each byte yi of the intermediate vector
y as a vector on GF (2). Then, we compute yi 7→ LA · yi for 1 ≤ i ≤ 16,
where LA is a fixed 8× 8-matrix with GF (2) elements. In [11, 6], it is shown
that we can express LA in F with the linearized polynomial

q(t) = 05 ·t+09 ·t2 +F9 ·t22
+25 ·t23

+F4 ·t24
+01 ·t25

+B5 ·t26
+8F ·t27

. (1)

3. ShiftRows and MixColumns. The vector state is transformed by two
functions called ShiftRows resp. MixColumns. In [11], it is shown that each
of these operations corresponds to a matrix multiplication. Indeed, this step
consists in the following computation z 7→ MixA · RA · z, where z ∈ F16 is
the input of this step and MixA, RA are two fixed (16× 16) F-matrices. For
more details we refer again to [11].

4. AddRoundKey. Finally, the last operation of the round is simply a subkey
addition, i.e. an addition in F16.

Remark. We notice that the AES S-Box is composed of the step 1 and 2. This
transformation performed in the S-Box is called SubBytes. We have omitted a
constant addition in the S-Box for sake of simplicity because it can be incorpo-
rated in a modified key schedule (see [11, 10]).
We also remark that the structure of the AES is composed of simple operations
in F (such as inversions, linear operations) except for the evaluation of the lin-
earized polynomial q. By extending the state space such that the conjugates can
be included, the polynomial q can be represented by a matrix on F. Using this
fact, S. Murphy and M. Robshaw [11] introduced the cipher BES in order to
express the AES in a very simple form.

2.2 The BES Structure

The block-cipher BES is defined on the state space B := F128 and has a similar
structure to the AES one. We describe it below.

Round of BES. One round of the BES is essentially an affine transformation
except a componentwise inversion. We can describe it as follows (using notation
of [11]) :

Ri : b −→MB · b(−1) + (kB)i,

where b ∈ B denotes the state vector, (kB)i ∈ B denotes the ith-subkey and
MB a 128× 128-matrix on F.

BES encryption. Let p ∈ B be the plaintext, c ∈ B the ciphertext, wi (0 ≤
i ≤ 10) the state vector after the ith round and (kB)i ∈ B (0 ≤ i ≤ 10) the 11
subkeys. The BES encryption can be described as follows:

w0 = p + (kB)0
wi = Ri(wi−1) for i = 1, . . . , 9

c = w10 = M∗
B ·w(−1)

9 + (kB)10,

where M∗
B is a 128 × 128-matrix on F. Then, the encryption is composed only

of the round described above except for an initial addition key and a different
matrix in the last round.

The key motivation of BES is that a given vector space V of dimension 16
(on F) is stable by BES as long as the key lies in a similar vector space and that
the cipher BES restricted to V is isomorphic to AES.

3 Big-BES

3.1 Extension of F

Our extension that we define below was inspired by the same way the ring of the
p-adic integers extends Z/pZ. We consider here an analog extension in which
we keep only the two first terms of the “F-adic extension”. To this end, we
simply take F × F such that computations on the first coordinate corresponds
to regular F-operations. Hence, we choose the set R := F× F equipped with the
componentwise addition

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) (2)

and the following multiplication:

(x1, y1) · (x2, y2) = (x1 · x2, x1 · y2 + x2 · y1) (3)

From this definition, we notice that (R, +, ·) is a commutative ring with the
unit element (1, 0) and that the multiplicative inverse of an invertible element
(x, y) ∈ R is given by

(x, y)−1 = (x−1, yx−2).

Thus, no element of the form (0, y) is invertible and R is not a field. Since
defining Big-BES requires to modify the inversion in a permutation on R, we
use the following inversion map:

(x, y)(−1) :=

{
(x−1, yx−2) if x 6= 0
(0, y(−1)) if x = 0

(4)

We notice that every operation performed on the first component of an element
of R is the same as in F. Hence, the field F is embedded in R via the first com-
ponent. Moreover, R is a F-vector space and its scalar multiplication by λ ∈ F
corresponds to a multiplication in R by (λ, 0).

Remark. If we fix the x-component in R and if x 6= 0, the inverse operation is
linear with respect to the y-component.
Remark. R corresponds to F[X]/(X2), i.e. polynomials over F truncated to the
first two terms.

3.2 Definition of the Big-BES

Here we introduce a block cipher called Big-BES that is defined on B := R128

and that is an extension of BES, i.e. in which BES is embedded. First, we will
consider the most general case and then we will look for an appropriate way to
embed BES in the Big-BES.

The Big-BES is essentially obtained by replacing the field F by the ring
R = F× F and using the trivial embedding e : F→ R defined by

e(x) = (x, 0). (5)

The rounds of Big-BES are defined exactly as for BES except that the operations
are performed in R and that we replace the elements of the matrix MB by their
images under the trivial embedding e, i.e.

(MBig)ij := e((MB)ij) for 1 ≤ i, j ≤ 128.

In a similar way, we define the matrix M∗
Big ∈ R128×128. So, the Big-BES is

defined as follows:

w0 = p + (kBig)0
wi = MBig ·w(−1)

i−1 + (kBig)i for i = 1, . . . , 9
c = w10 = M∗

Big ·w(−1)
9 + (kBig)10,

where the plaintext p, the ciphertext c, the intermediate vectors wi’s and the
subkeys (kBig)j ’s are in B, the state space of Big-BES. Obviously, Big-BES is
the natural extension of BES where F is replaced by R.

3.3 Embedding BES in Big-BES

Let Φ : B → B that acts on each F-component applying the function e. This
function maps the subkeys and the plaintext of BES in a subset BE of B such
that a BES encryption can be described by a Big-BES encryption restricted on
BE . Hence, the following diagram

B
Φ−−−−→ BE ⊂ B

(k)i→
yBES Big-BES

y←Φ((k)i)

B
Φ−1

←−−−− BE ⊂ B

(6)

commutes. This condition is necessary to ensure that a Big-BES encryption on
BE really corresponds to a BES encryption. More generally, we can replace e by
a function F defined by F (x) = (x, c · x), for a constant c ∈ F. Even with this
generalisation the diagram (6) still commutes. Thus, we have

Big-BESΦ((kB)i) ◦ Φ(b) =
(
BES(kB)i

(b), c · BES(kB)i
(b)

)
. (7)

So, we have found a restriction of Big-BES that consists more or less to duplicate
BES. It seems to be clear that such a restriction has the same security properties
as BES.

4 Attack on Big-BES

4.1 A Detailed Description of Big-BES

In this subsection, we will describe Big-BES in more details by writing the
ciphertext in an expression depending on the subkeys and the plaintext.

In order to simplify the notation, we will denote the subkeys as ki ∈ B
for i = 0, . . . , 10 and the matrices MB resp. M∗B as M resp. M∗. An element
of B = R128 will be represented by two elements of F128, for instance ki :=
((ki)1, (ki)2) ∈ F128 × F128. Then, we will represent the plaintext with the pair
(x,y), the vectors wi with (ui,vi) (i = 0 . . . 10) and the ciphertext (u10,v10)
with (uc,vc).

Now, we would like to describe ui and vi in some expressions depending on
(x,y) and ((ki)1, (ki)2). To this end, we first notice that the matrix multiplica-
tion MBig · b, b ∈ B, can be simply computed as follows,

MBig · b = MBig · (b1,b2) = (M · b1,M · b2),

where b1, b2 ∈ F128. Namely, since every elements of MBig is the image un-
der the trivial embedding of the elements of MB , we see that such a matrix
multiplication operates identically on the two F128-components of b. An other
important operation in Big-BES is the componentwise inversion of the vectors
wi, (0 ≤ i ≤ 10). In the description of Big-BES, we will suppose here that ui

has no elements of F equal to zero. Hence, we have

w(−1)
i = (ui,vi)(−1) = (u−1

i ,vi · u−2
i),

where · denotes the componentwise multiplication.
We are now in a position to describe the vectors ui, vi. Firstly, for i = 0 we have
obviously

(u0,v0) = (x + (k0)1,y + (k0)2)

and after the first round we obtain

(u1,v1) =
(
M · (x + (k0)1)−1 + (k1)1,M ·

(
(y + (k0)2) · (x + (k0)1)−2

)
+ (k1)2

)
.

We remark that the vectors vi are obtained by iterating some affine functions
depending on the subkeys and x. So, we can write vc in the following form

vc = A0 · y + A0 · (k0)2 + A1 · (k1)2 + · · ·+ A9 · (k9)2 + (k10)2, (8)

where Ai are some matrices depending on the subkeys (kj)1, (0 ≤ j ≤ 9) and x.
They are defined such that

Ai · p = M∗ · ((· · ·M · ((M · (p · u−2
i)) · u−2

i+1) · · ·) · u−2
9),

for all p ∈ F128. Since the componentwise multiplication with the vectors uj can
be represented by the diagonal matrix diag(uj), we have

Ai = M∗ · diag(u−2
9) ·M · diag(u−2

8) · · ·M · diag(u−2
i). (9)

In order to finish our description of Big-BES, it remains only to express the ui’s
as some functions of x and the subkeys (ki)1. This is given by noticing that the
ui’s are the intermediate state vectors of a BES encryption taking x as plaintext
and (ki)1 as subkeys. Thus, we have

uc = BES(ki)1(x),

and finally, we have expressed the ciphertext (uc,vc) as a function of the plain-
text (x,y) and the subkeys ((ki)1, (ki)2).

Remark. If we fix x the first component of the plaintext and if we consider
the subkeys as some fixed parameters, we notice from (8) that vc, the second
component of the ciphertext is simply given by the affine transformation

vc = A · y + r, (10)

where A ∈ F128×128 and r ∈ F128 are some constants. However, this representa-
tion works under the assumption that the ui’s (0 ≤ i ≤ 9) have no component
equal to zero. Actually, this assumption is quite strong, because it concerns
10 · 128 = 1280 elements of F. Namely, the probability that all these elements
are not equal to zero is

(
255
256

)1280

= 0, 006672 ≈ 1
150

. (11)

4.2 The Attack

The attack we will describe below is a chosen plaintext attack and it exploits the
fact that Big-BES possesses certain linearity properties we already mentioned
above. In fact, if we fix x we know that the second component of the ciphertext
is affine in y if there is no 0-inversion in the vectors ui (0 ≤ i ≤ 9). It is not

difficult to see that this affine property depends only on x, once the subkeys are
fixed. The idea of our attack will be to collect sufficiently many x’s such that the
affine property is verified. From this, we will be able to find the subkeys (ki)1
by a sieving method.

The affine property. Here, for a given x, we show how we can check the
affine property, i.e, that no 0-inversion occurred in the ui. We consider here a
Big-BES encryption with some given fixed subkeys, two plaintexts of the form
(x,y), (x,y′) and their corresponding ciphertexts (u,v), (u,v′). By applying
the equality (10) for the two above plaintexts, we have

A · y = v + r (12)
A · y′ = v′ + r. (13)

Since the underlying field is of characteristic two, r + r = 0 and we obtain

A · (y + y′) = v + v′ (14)

by adding (12) with (13). Hence, we notice that the sum v+v′ is constant when
y + y′ is constant. To determine if the affine property holds for a given x, we
will encrypt 4 plaintexts of the form (x,y), (x,y′), (x,y′′) and (x,y + y′ + y′′)
and check that the corresponding ciphertexts satisfy

v + v′ + v′′ + v′′′ = 0.

Hence, we should be able to conclude that no 0-inversion occurred in the Big-BES
encryption with this x. Notice that the inversion of the form (0, 0)(−1) = (0, 0)
preserves the linearity and that some bad x could pass the test. However, since
this should occur for 4 plaintexts, we will assume that the probability of such
an event is negligible.

The attack. In this attack, we assume that we have a Big-BES encryption
oracle that allows to encrypt any plaintexts. The goal is to find the subkeys used
in this Big-BES encryption. We describe below the different steps of this attack.

1. We pick some vectors x ∈ F128 at random and check if the affine property
holds for each of them by using our oracle to encrypt the plaintexts (x,y)
needed to this end. Then, we collect the x’s that satisfied the affine property.
The set of these collected vectors is denoted as P = {x1,x2, · · · ,xn}.

2. For every 1 ≤ i ≤ 128, we search for the subkey element (k0)i
1 that satisfies

(k0)i
1 6= xi

j

for all 1 ≤ j ≤ n. If this subkey element is not uniquely determined by the
set P , we can look for some new x ∈ P that allows us to exclude some values
of (k0)i

1. All these new x′s are collected in P too. At the end of this step,
we can deduce the value of the subkey (k0)1.

3. For every xi ∈ P , we compute u0i = xi +(k0)1 and we collect all the vectors
M · u(−1)

0i in a set denoted as P1. Again, we know that the subkey element
(k1)i

1 can be deduced as above by the statement

(k1)i
1 6=

(
M · u(−1)

0j

)i

for all 1 ≤ j ≤ n. If it is needed, we can complete the set P1 with new
appropriate vectors in order to find the right subkey (k1)1.

4. We continue the same process by computing some successive sets Pj , (2 ≤
j ≤ 9) and by using the same sieving method as above to find the subkeys
(k1)j , (2 ≤ j ≤ 9).

5. We pick an element x ∈ F128 and compute its corresponding ciphertext u10

by the encryption oracle. The already known subkeys allow us to calculate
u9 and the subkey (k1)10 is found by the equality

(k1)10 = M∗ · u(−1)
9 + uc.

6. Since the subkeys (k1)i’s are known, we can now compute the matrices Ai’s
corresponding to any plaintext (x,y) by using the formula (9). By choosing
many plaintexts (x,y) and computing the corresponding matrices Ai’s and
the corresponding ciphertext v10, we can find a sufficient number of linear
equations taking the subkeys (k2)i’s as variables. Namely, applying the linear
equation (8) to many different plaintexts provide a linear system allowing to
determine the (k2)i’s.

Complexity. Here we estimate roughly the number of Big-BES encryptions re-
quired to this attack. The biggest amount of computations is required for collect-
ing the elements x ∈ P9 satisfying the affine property. To find each of those x, we
have to try 150 candidates in average (11) with which we need to compute 4 en-
cryptions to test the affine property. We estimate in the Appendix A that P9 con-
tains about 2100 elements. Thus, we conclude that 150·2100·4 = 1′260′000 ≈ 220

encryptions have to be calculated. This demonstrates that Big-BES is terribly
weak.

Implications for BES. As we have seen in (6), breaking BES corresponds
to breaking Big-BES on the restricted set BE . From this, we remark that our
attack against Big-BES can not be applied against BES. Indeed, this is due to
the fact that all 0-inversions in BE are of the form (0, 0)−1 = (0, 0).

5 CES

In this section we will construct a similar extension to AES called CES as for
“ Crooked Encryption System ”. This extension is natural in the sense that the
Murphy-Robshaw-like extension of CES is indeed Big-BES, so that we have a

kind of commutative extension diagram

AES F→R−−−−→ CES

F16→F128
y

yR16→R128

BES F←R←−−−− Big-BES

(15)

5.1 Definition

As for Big-BES, CES is defined on the commutative ring R with the operations
defined by (2), (3), (4). This extension is obtained by replacing the field F by
the ring R and by mapping the constant elements of the AES defined on F un-
der the trivial embedding (5). This concerns the elements of the matrices MIXA

and RA and the coefficients of the polynomial q of equation (1). These two new
matrices will be denoted as MIXC resp. RC . Hence, CES is a cipher having the
state space R16 and a round has the form:

Round. Let b ∈ R16 a state vector. Then the ith round is

b 7→MC · q(b(−1)) + (kC)i for 1 ≤ i ≤ 9,

where MC = MIXC · RC , (kC)i denotes the ith subkey and the polynomial q
operates componentwise. Note that the 0-round is simply a subkey addition and
the 10th is obtained by replacing MC by another matrix.

5.2 The Embedding

As in Section 3.3, we notice that e embeds AES in CES quite well since q(e(x)) =
e(q(x)).

5.3 Attack against CES

Here we show that the attack in the subsection 4.2 can be easily adapted to
CES. We will use the same principle that allows to detect a 0-inversion in F. In
order to show this fact, we have still to check that CES transforms the second
component of a plaintext linearly when the first component is fixed.

First, we note that
q(x,y) = (q(x), 05 · y),

where x,y ∈ F16 and q operates componentwise on the 16 components of R16

resp. F16. Hence, a CES encryption is linear in y when x is fixed, therefore we
can apply the same attack consisting in checking a linear property for some given
x. Notice also that the first component is transformed as in an AES encryption.

Complexity. For the complexity estimation of this attack, we need to compute
the ratio of the plaintexts for which no 0-inversion occur in a CES-encryption.
This is given by (

255
256

)160

= 0.5346 =
1

1.87

Hence, we have to encrypt 1.87 plaintexts in average until we find the required
one for the step 1 of the attack. Thus, the number of CES encryptions needed
for this cryptanalysis is 1.87 · 1850 · 4 = 13′838 ≈ 214 (See Appendix A) .

Implications for the AES. As in the BES case, this attack can not be applied
against AES. Namely, the embedding function e induces only 0-inversions of the
form (0, 0)−1.

6 Discussion about Extending Block Ciphers

In this paper, we constructed some extensions of AES and BES by replacing
the field F by a natural extension of it. The first natural extension we thought
was inspired by the p-adic numbers. So, we considered formal sums

∑∞
i=0 xi · 2i

where (x0, x1, . . . ,) ∈ FN. To simplify such expressions, we chose to define our
extension by taking the projection modulo 4 of these formal sums. This equiva-
lently consists of terms of the form x0 +2 ·x1 where x0, x1 ∈ F. In this structure,
we remark that the inversion has the desired property, namely this operation is
linear in x1 when we fix x0. This led to the fact that a new BES like block-cipher
defined on this ring is weak. Indeed, the attack applied in 4.2 could easily be
adapted to this case provided that we define the inversion of an element of the
form 0 + 2 · x1 similarly as in (4). Nevertheless, it turns out that the calcula-
tions are a little bit more complicated than in R. As a conclusion, we would
like to mention that there are probably some other extensions of F presenting
similar properties, but R seemed to be one of the simplest and most appropriate.

So, we have shown that several natural extensions for AES and BES are
weak. Note that this kind of extension can typically be used in order to prevent
from some power analysis or other side channel attacks. Our result demonstrate
that this should be done with extreme care.

7 Conclusion

We have described some trivially weak extensions of BES respectively of AES
although the extensions are quite natural in the sense that we simply replace F by
another algebraic structure. This shows that some similar results can be obtained
in the public key cryptography as well as in the symmetric key cryptography
using some Hensel-like ideas. In particular, we have shown that a supposedly

secure block cipher can be naturally embedded in a very weak one by modifying
its underlying algebraic structure.

Of course, this construction did not allow to find any security flaws against
AES and BES. Moreover, embedding AES in a weak block cipher is certainly not
the right way in order to find a cryptanalysis against it. The reason of this comes
from the embedding function. Since this one has to be preserved under the basic
round operations, it will have a very simple form. So, the equivalent ciphers to
AES induced by it will consist in some duplications of AES. Therefore, despite
of the elegance of the Murphy-Robshaw algebraic representation of AES, attacks
on the BES extension may have no consequence at all for the security of AES.
However, our work did not allow to conclude that this must be the case.

References

1. K. Aoki and S. Vaudenay, On the Use of GF-Inversion as a Cryptographic Primi-
tive, Selected Areas in Cryptography, 2003.

2. E. Barkan and E. Biham, In How Many Ways Can You Write Rijndael ?, Advances
in Cryptology - Asiacrypt ’02, LNCS vol. 2501, pp. 160-175, Springer-Verlag, 2002.

3. E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard, Springer-Verlag, New York, 1993.

4. D. Catalano, P. Q. Nguyen and J. Stern, The Hardness of Hensel Lifting: The Case
of RSA and Discrete Logarithm, Advances in Cryptology - Asiacrypt ’02, LNCS
vol. 2501, pp. 299-310, Springer-Verlag, 2002.

5. N. Courtois and J. Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations, Advances in Cryptology - Asiacrypt ’02, LNCS vol. 2501, pp.
267-287, Springer-Verlag, 2002.

6. J. Daemen and V. Rijmen, The Design of Rijndael: AES-The Advanced Encryption
Standard, Springer-Verlag, 2002.

7. N. Ferguson, R. Shroeppel and D. Whiting, A Simple Algebraic Representation
of Rijndael, Selected Areas in Cryptography ’01, LNCS vol. 2259, pp. 103-111,
Springer-Verlag, 2001.

8. R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its
Applications 20, Cambridge University Press, 1997.

9. M. Matsui, Linear Cryptanalysis method for DES Cipher, Advances in Cryptology
- Eurocrypt ’93, LNCS vol. 765, pp. 386-397, Springer-Verlag, 1994.

10. S. Murphy and M.J.B Robshaw, New Observations on Rijndael, NIST AES website
csrc.nist.gov/encryption/aes, August 2000.

11. S. Murphy and M.J.B Robshaw, Essential Algebraic Structure Within the AES,
Advances in Cryptology - Crypto ’02, LNCS vol. 2442, pp. 1-16, Springer-Verlag,
2002.

12. National Institute of Standards and Technology, Advanced Encryption Standard,
FIPS 197, 26 November 2001.

13. T. Okamoto and S. Uchiyama, A New Public-Key Cryptosystem as Secure as Fac-
toring, Advances in Cryptology - Eurocrypt ’98, LNCS vol. 1403, pp. 308-318,
Springer-Verlag, 1998.

14. T. Satoh and K. Araki, Fermat Quotients and the Polynomial Time Discrete Log
Algorithm for Anomalous Elliptic Curves, Commentarii Math. Univ. St. Pauli, 47,
pp. 81-92, 1998.

15. Nigel P. Smart, The Discrete Logarithm Problem on Elliptic Curves of Trace One,
Journal of Cryptology, 12, pp. 193-196, 1999.

A Computation of the size of P9.

Here we estimate the number of all elements x ∈ F128 required for the siev-
ing method, i.e. the cardinality of P9. To this goal, we suppose that each F-
component of the subkeys is sieved with elements that are picked randomly in
F and that all these components are independent. Hence, we will estimate the
number of such x needed for the sieving step of one F-component and assume
that they will sieve the other ones.

First, we consider the following computation. Let n ∈ N and a1, . . . , an ∈U

{1, 2, . . . , z} a random sequence with uniform distribution. We compute the num-
ber of values of the set {1, . . . , z} that lie in the sequence a1, . . . , an in average.
This is given by calculating the following expected value:

E

(
z∑

i=1

1{∃ j: aj=i}

)
= z · Prob (∃ j : aj = 1) = z ·

(
1−

(
z − 1

z

)n)
. (16)

Cardinality of P9. We set z = 256 and we will choose n = 1800 elements for the
set P . To obtain the number of elements of P9, it remains to compute how many
elements are missing for the sieving of all F-subkeys elements. From (16), we de-
duce that z ·(z−1

z

)n = 256 ·(255
256

)1800 = 0.22316 elements are missing in average.
Since we have to sieve 1280 F-elements, we can expect that 1280 · 0.22316 ≈ 285
x’s will have to be added to the set P in order to achieve our sieving method.
Thus, #P9 = 1800 + 285 ≈ 2100 in the Big-BES case. A similar computation
provides that #P9 ≈ 1850 in the CES case.

Remark. We have chosen n = 1800, because it can be shown that this value
minimizes #P9.

