Generic Homomorphic Undeniable Signatures Erratum

Jean Monnerat * and Serge Vaudenay **
EPFL, Switzerland
http://lasecwww.epfl.ch

17th February 2005

This document provides an erratum of the article "Generic Homomorphic Undeniable Signatures" which was published in the proceedings of Asiacrypt '04, LNCS 3329, pp. 354-371, Springer, 2004. At page 360, the last approximation in the following expression

$$
\varepsilon_{2} \leq \Phi\left(-\sqrt{n} \frac{\theta}{2 \sqrt{p^{-1}\left(1-p^{-1}\right)}}\right) \approx \frac{1}{\sqrt{2 \pi}}\left(e^{\frac{-n \theta^{2}}{4\left(p^{-1}\left(1-p^{-1}\right)\right)}}\right),
$$

is false. Let $\varphi(x):=\frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}}$. In the above approximation, we have used the false approximation $\Phi(-x) \approx \frac{1}{\sqrt{2 \pi}} \cdot e^{-x^{2}}$ instead of

$$
\Phi(-x) \approx \varphi(x) / x
$$

which is correct when x is large. Note also that $\varphi(x) / x \leq \varphi(x)$ when x is large. Hence, if we set $n=8 \theta^{-2}\left(p^{-1}+\theta\right) \log (p / \varepsilon)$ we get

$$
\varepsilon_{2} \leq \frac{1}{\sqrt{2 \pi}}\left(e^{\frac{-n \theta^{2}}{8\left(p^{-1}\left(1-p^{-1}\right)\right)}}\right)=\frac{1}{\sqrt{2 \pi}}\left(\frac{\varepsilon}{p}\right)^{\frac{p+p^{2} \theta}{p-1}}
$$

for n large enough. The rest of the paper remains correct except that the complexity becomes $8 \theta^{-2} \log (p / \varepsilon)$ oracle calls.

Below we rewrite Lemma 5 and its proof sketch in a correct form.
Lemma 5. Given two finite Abelian groups G and H, and a set of s points $S=\left\{\left(x_{i}, y_{i}\right) \mid i=1, \ldots, s\right\}$, we assume that $x_{1}, \ldots, x_{s} H$-generate G. We

[^0]assume that we are given the order d of H whose smallest prime factor is p and that we can sample elements in G with a uniform distribution. We assume that we have an oracle function $f: G \longrightarrow H$ such that
$$
\operatorname{Pr}_{\left(r, a_{1}, \ldots, a_{s}\right) \in_{U} G \times \mathbf{Z}_{d}^{s}}\left[f\left(d r+a_{1} x_{1}+\cdots+a_{s} x_{s}\right)=a_{1} y_{1}+\cdots+a_{s} y_{s}\right]=\frac{1}{p}+\theta
$$
with $\theta>0$. Let $\varepsilon>0$ be arbitrarily small. There exists a group homomorphism which interpolates S and which is computable within $8 \theta^{-2} \log (p / \varepsilon)$ oracle calls with an error probability less or equal to ε.

Proof (sketch). Due to Lemma 4, the homomorphism g exists and we have $\operatorname{Pr}_{x_{\in U} G}[f(x)=g(x)]=p^{-1}+\theta$. We use the same techniques which are used in linear cryptanalysis and consider the following algorithm.

```
Input: \(x \in G\)
    repeat
        pick \(r \in G, a_{1}, \ldots, a_{s} \in \mathbf{Z}_{d}\) at random
        \(y=f\left(x+d r+a_{1} x_{1}+\cdots+a_{s} x_{s}\right)-a_{1} y_{1}-\cdots-a_{s} y_{s}\)
        \(c=0\)
        for \(i=1\) to \(n\) do
            pick \(r \in G, a_{1}, \ldots, a_{s}, a \in \mathbf{Z}_{d}\) at random
            if \(f\left(d r+a_{1} x_{1}+\cdots+a_{s} x_{s}+a x\right)=a_{1} y_{1}+\cdots+a_{s} y_{s}+a y\)
            then
                \(c=c+1\)
            end if
        end for
    until \(c>\tau n\)
Output: \(y\)
```

We choose $n=8 \theta^{-2}\left(p^{-1}+\theta\right) \log (p / \varepsilon)$ and $\tau=p^{-1}+\frac{1}{2} \theta$ and we estimate the error probability of the acceptance test. We consider two types of error:

$$
\varepsilon_{1}=\operatorname{Pr}_{x \in U G}[c \leq \tau n \mid y=g(x)] \quad \varepsilon_{2}=\operatorname{Pr}_{x \in U G}[c>\tau n \mid y \neq g(x)]
$$

We will now estimate these two values and show that they are negligible. If $y \neq g(x)$, then the test (\mathbf{T}) works with probability $t_{2} \leq 1 / p$ due to Lemma 4 . We also notice that if $y=g(x)$, the probability that the test works is $\frac{1}{p}+\theta$. Hence, using the central limit theorem we obtain

$$
\varepsilon_{1} \approx \Phi\left(\sqrt{n} \frac{\tau-p^{-1}-\theta}{\sqrt{\left(p^{-1}+\theta\right)\left(1-p^{-1}-\theta\right)}}\right) \quad \varepsilon_{2} \approx \Phi\left(-\sqrt{n} \frac{\tau-t_{2}}{\sqrt{t_{2}\left(1-t_{2}\right)}}\right)
$$

when n is large enough and where Φ denotes the distribution function of the standard normal distribution. By looking at the logarithmic derivative of the
function $f(t)=(\tau-t) /(\sqrt{t(1-t)})$ and noticing that this one is negative on the interval $[0, \tau]$ we deduce that

$$
\varepsilon_{2} \leq \Phi\left(-\sqrt{n} \frac{\tau-p^{-1}}{\sqrt{p^{-1}\left(1-p^{-1}\right)}}\right)
$$

Using $\tau=p^{-1}+\frac{1}{2} \theta$ provides

$$
\varepsilon_{2} \leq \Phi\left(-\sqrt{n} \frac{\theta}{2 \sqrt{p^{-1}\left(1-p^{-1}\right)}}\right) \approx \frac{2 \sqrt{p^{-1}\left(1-p^{-1}\right)}}{\theta \sqrt{n}} \cdot \frac{1}{\sqrt{2 \pi}} e^{\frac{-n \theta^{2}}{\overline{\left(p^{-1}\left(1-p^{-1}\right)\right)}}},
$$

where the last approximation holds when n is large enough (ε small). Since n is large, we also have

$$
\varepsilon_{2} \leq \frac{1}{\sqrt{2 \pi}} e^{\frac{-n \theta^{2}}{8\left(p^{-1}\left(1-p^{-1}\right)\right)}}
$$

Now, we substitute the expression of n in the above inequality and we obtain

$$
\varepsilon_{2} \leq \frac{1}{\sqrt{2 \pi}}\left(\frac{\varepsilon}{p}\right)^{\frac{p+p^{2} \theta}{p-1}}
$$

Since $\frac{p+p^{2} \theta}{p-1} \geq 1$ and $\frac{\varepsilon}{p}<1$ when ε is small, we finally get $\varepsilon_{2} \leq \varepsilon /(p \sqrt{2 \pi}) \leq \rho \varepsilon / 2$ where $\rho=p^{-1}+\theta$. In a similar way, we can show that $\varepsilon_{1} \leq \varepsilon / 2$. It remains to compute the complexity and the error probability of the algorithm. At first, we observe that the probability α that $c \leq \tau n$ in the algorithm is equal to $\rho \varepsilon_{1}+(1-\rho)\left(1-\varepsilon_{2}\right)$. From the estimate of $\varepsilon_{1}, \varepsilon_{2}$, we see that $\alpha \approx 1-\rho$. Moreover, the number of iterations is equal to $\sum_{i=1}^{\infty} i \alpha^{i-1}(1-\alpha)=1 /(1-\alpha) \approx 1 / \rho$. Hence, the complexity is $n / \rho=8(\log (1 / \varepsilon)+\log (p)) /\left(\rho-\frac{1}{p}\right)^{2}$. The probability of error is given by $\sum_{i=1}^{\infty} \alpha^{i-1}(1-\rho) \varepsilon_{2} \approx \varepsilon_{2}(1-\rho) / \rho \leq \varepsilon_{2} / \rho \leq \varepsilon / 2$.

[^0]: * Supported in part by a grant of the Swiss National Science Foundation, 200021101453/1.
 ** Supported in part by the National Competence Center in Research on Mobile Information and Communication Systems (NCCR-MICS), a center supported by the Swiss National Science Foundation under grant number 5005-67322.

