Chaum’s Designated Confirmer Signature
Revisited

Jean Monnerat* and Serge Vaudenay

EPFL, Switzerland
http://lasecwww.epfl.ch

Abstract. This article revisits the original designated confirmer signa-
ture scheme of Chaum. Following the same spirit we naturally extend the
Chaum'’s construction in a more general setting and analyze its security
in a formal way. We prove its security in the random oracle model by
using a random hash function and a random permutation. We notably
consider the confirmer as an attacker against the existential forgery un-
der an adaptive chosen-message attack. This security property is shown
to rely on the hardness of forging signatures in a universal way of a classi-
cal existentially forgeable signature scheme. Furthermore, we show that
the invisibility of the signatures under a non-adaptive chosen-message
(aka lunchtime) attack relies on some invisibility properties of an ex-
istentially forgeable undeniable signature scheme. The existence of this
cryptographic primitive is shown equivalent to the existence of public-
key cryptosystems. It is also interesting to see that this article confirms
the security of Chaum’s scheme since our construction is a natural gen-
eralization of this scheme.

Key words: Designated confirmer signatures, random oracle model.

1 Introduction

Undeniable signatures [7] are some signature schemes which allow to authenticate
a message in such a way that the recipient has to interact with the signer in
order to be convinced of its validity. Otherwise the recipient cannot learn any
information on the validity of the signature by its own. This kind of signature is
useful for privacy protection when the signer would like to keep control on the
spread of proofs of his signing. Some further applications such as the authenticity
of software or auctions have been mentioned or presented in [5,8,9,15,25].

One drawback of such a signature scheme is that the physical integrity of
the signer can be threatened to make him collaborate to the confirmation or
denial protocol. This motivated Chaum in 1994 [6] to introduce designated con-
firmer signatures in which the ability to confirm/deny a signature is shifted to
a delegate. The principal idea of this scheme is to mix an undeniable signature
related to the confirmer with the hash of the message to be signed and then to

* Supported by a grant of the Swiss National Science Foundation, 200021-101453/1.



sign the result by using a classical existentially forgeable signature. In the same
year, Okamoto [19] presented a generic construction based on some three move
identification protocols and proved that the existence of confirmer signatures is
equivalent to that of public-key cryptosystems. Since then, several new schemes
have been proposed and some security issues have been explored [3,4,12,16].

The goal of this paper is to review the original scheme of Chaum [6] as well
as the underlying ideas of his construction in a formal and more general setting.
Namely, his original article neither presents a formal model nor a security proof.
Our principal motivation is that the scheme of Chaum remains at this time one
of the most simple and elegant construction of designated confirmer signature
scheme. One motivation is to study the possibility to use an undeniable signature
scheme in the construction of a designated confirmer signature, in particular
reusing the confirmation and denial protocol.

As far as we know, the only generic constructions of designated confirmer sig-
natures which are based on an undeniable signature scheme are that of Chaum [6)
and the one of Okamoto [19]. The security of the latter was only proved in 2001
in [20] and its resistance against existential forgery under an adaptive chosen-
message attack holds only against a classical adversary, i.e., anybody but the
confirmer. To our best knowledge, the security of the Chaum’s construction has
not been proved yet. Moreover, the only known security flaw of this scheme is
mentioned in [3]. The authors presented an attack against the invisibility of sig-
natures in the adaptive scenario against the scheme of Michels and Stadler [16]
and argued that the same kind of attack holds against the scheme of Chaum.
In this attack, the attacker is able to transform a given message-signature pair
in a new one such that the latter pair is valid only if the original pair is valid.
Hence, the attacker breaks the invisibility of the first signature by sending the
second pair to the confirmer for a confirmation (or denial) protocol.

Contributions of this paper. We extend the Chaum’s construction based on
an undeniable signature in a very natural way and formally study its security.
To this end, we assume we have the two following cryptographic primitives at
disposal: a classical existentially forgeable signature scheme and an existentially
forgeable undeniable signature scheme. We then introduce the model of security
and prove the security of this construction in the random oracle model. The
main security result concerns the resistance against existential forgery under
an adaptive chosen-message attack. This property is proved assuming that the
underlying existentially forgeable signature scheme is resistant against a uni-
versal forgery under a no-message attack and holds even when the attacker is
the confirmer. We furthermore show that the invisibility holds under a lunchtime
chosen-message attack provided that the underlying undeniable signature scheme
satisfies invisibility under a lunchtime known-message attack. This generalized
Chaum construction does not satisfy invisibility against an adaptive attacker.
We explain why this property certainly cannot be achieved without considerably
changing the basic construction and its spirit. We also present a practical real-
ization of this generalized Chaum construction. Finally, we dedicate a section
of this paper to show that the existence of an existentially forgeable undeniable



signature scheme which is invisible under a lunchtime known-message attack is
equivalent to the existence of a public-key encryption scheme. This confirms that
this construction is consistent with the result of Okamoto [19] and that depend-
ing on the required properties, an undeniable signature can lie in two classes of
cryptographic primitives, those of public-key encryption and digital signatures.

2 Designated Confirmer Signature Scheme

We recall in this section the different algorithms of a designated confirmer sig-
nature scheme. In such a scheme we need to consider three entities that are the
signer (S), the confirmer (C) and the verifier (V). They all possess a pair of
public/secret key KV := (KF,KY) for U € {S,C, V}. The set of the message
space is denoted by M and the set of the signature space is denoted by X. A
designated confirmer signature is composed of the following algorithms.

Setup Let k be a security parameter. The setup is composed of three probabilis-
tic polynomial time algorithms SetupY for U & {S, C, V} producing keys
KY — SetupU(lk). Furthermore, we assume that public keys are exchanged
in an authenticated way.

Sign Let m € M be a message. On the input of the signer’s secret key K5 and
confirmer’s public key ICS, the (probabilistic) polynomial time algorithm
Sign generates a signature o « Sign(m, K3, /CS) of m (which lies in X).
We say that the pair (m, o) is valid if there exists a random tape such that
Sign(m, ICE’,ICS) outputs o. Otherwise, we say (m, o) is invalid.

Confirm Let (m,0) € M x X be a supposedly valid message-signature pair.
Confirm is an interactive protocol between C and V i.e., a pair of interactive
probabilistic polynomial time algorithms Confirm© and Confirm" such that
m, o, ICS7 ICS, ICIY are input of both, K€ is the auxiliary input of Confirm®©
and KY is the auxiliary input of ConfirmY. At the end of the protocol,
ConfirmY outputs a boolean value which tells whether ¢ is accepted as a
valid signature of m.

Deny Let (m,0’) € M x X be an alleged invalid message-signature pair. Deny
is an interactive protocol between C and V i.e., a pair of interactive proba-
bilistic polynomial time algorithms DenyC and DenyV such that m, o', ICI?,

ICIS,7 ICIY are input of both, K€ is the auxiliary input of Denyc and kY is
the auxiliary input of DenyV. At the end of the protocol, DenyV outputs a
boolean value which tells whether o’ is accepted as an invalid signature.

3 Security Requirements

Ezxistential Forgery This notion protects the signer S from an attacker A which
would like to forge a signature on a (possibly random) message m € M without
knowing the signer’s secret key KS. In this paper, we will consider the stan-
dard security notion of existential forgery under adaptive chosen-message attack



defined by Goldwasser et al. [11] for classical digital signatures. We adapt this
notion in our context as follows.

Definition 1. The designated confirmer signature Sign is secure against an ex-
istential forgery under adaptive chosen-message attack if there exists no proba-
bilistic polynomial time algorithm A which wins the following game with a non-
negligible probability.

Game: A receives ICS, ICS, ’C;Y (possibly KE) from (/CE,ICS) — Setupc(lk),
(K5, K8) Setup®(1%), (KY,KY) — Setup(1%), generated randomly and de-
pending on a security parameter k. Then, A can query some chosen messages to
a signing oracle, some chosen pairs (m*,o*) € M x X to a confirmation (and
denial) protocol oracle and interact with it in a confirmation (denial) protocol
where the oracle plays the role of the prover. All these queries must be polyno-
mially bounded in k and can be sent adaptively. A wins the game if it outputs a
valid pair (m,0) € M x X' such that m was not queried to the signing oracle.
We denote this probability of success by Succgﬁ;fja (k).

Invisibility of Signatures We present here a definition which is adapted from [3].

Definition 2. We say that Sign satisfies the invisibility property under a lunch-
time chosen (resp. known)-message attack if there exists no probabilistic polyno-
mial time algorithm D called invisibility distinguisher which wins the following
game with a non-negligible probability.
Game: D receives ]CSJCEJC;Y (possibly KS) from (ICE,ICS) — Setup®(1%),
(K5,K5) — Setup® (1¥), (KY,KY) — SetupV(1¥). It can query some chosen
messages to a signing oracle and some message-signature pairs (m,c) € M x X
to some oracles running the confirmation and denial protocol. After a given time
(a lunch time), D does not have access to the oracles anymore. Then, it chooses
two messages mg,m1 € M and submits them to a challenger (resp. gets two
messages mg, m1 € M with uniform distribution). The challenger picks a ran-
dom bit b. He sets 0 = Sign(mb,ICss,lCS). D receives o. Finally, D outputs a
guess bit b'. D wins the game if b’ = b.
The advantage of such a distinguisher D is €, where the probability that b = b
18 % +e.

Note that this definition is a little weaker than the definition of [3] in which
D can continue to send queries to the oracles after the selection of mg, m;. We
will discuss this point in Subsection 5.2.

Non-Coercibility This notion prevents that the signer S is coerced by anybody
who would like to get a proof that a given signature was really generated by
S after the signature is released. As far as the signer erases his intermediate
computations, this notion can be regarded as an extension of the invisibility
property in which the attacker is given KS. Indeed a signer who would keep in
memory the random values needed to generate a signature could be coerced to
prove later how this one was generated. Note also that we should distinguish the
non-coercibility from the receipt-freeness where the signer would be unable to



keep a proof that he really generated a given signature even if he meant to. This
extends the non-coercibility to the non-corruptibility.

As additional security properties related to the confirmation and denial pro-
tocols, we have the completeness, the soundness and the non-transferability. The
completeness ensures that a protocol always passes when the prover and the veri-
fier follow it correctly. The soundness of the confirmation (resp. denial) protocol
prevents from a malicious prover to prove that an invalid (resp. valid) signa-
ture is valid (resp. invalid). The non-transferability of the confirmation (resp.
denial) protocol prevents a verifier from transferring the proof of the validity
(resp. invalidity) of a signature to any third party. This concept was first stated
in [14]. Moreover, a generic construction based on trapdoor commitments [2] is
also given in this article. Formal definitions of these notions are given in [3].

4 The Generalized Chaum’s Construction

4.1 Building Blocks

Ezistentially Forgeable Signature We consider an existentially forgeable signa-
ture ExSign such as the plain RSA or plain DSA' scheme. We have a setup which
generates the keys associated to this scheme (that of S), (K5, KS) « Setup®(1¥)
which depends on a security parameter k. Let My, denote the message space
and X, denote the signature space of this scheme. We have

Oex — ExSignis(mex), 0 or 1« ExVerifyis (Mex, Oex)

depending on whether (Mmex,0ex) € Mex X Xex is a valid message-signature
pair. We also have a probabilistic algorithm (meyx, Oex) — ExForge(ng’) which
existentially forges a valid message-signature pair such that meyx is uniformly
distributed in M.

For proving the security of Sign, we will need to assume that ExSign satisfies
universal unforgeability under a no-message attack.

Definition 3. We say that the signature scheme ExSign resists against a univer-
sal forgery under a no-message attack if there exists no probabilistic polynomial
time algorithm B that wins the following game with a non-negligible probability.
Game: B first receives the public key ICS from (ICIS), KS) — SetupS(1%) generated
randomly and depending on the security parameter k. Then, B receives a chal-
lenged message Moy € Moy which is uniformly picked at random. At the end, B
wins this game if it outputs a signature ooy such that ExVerify,CE (Mex, Oox) = 1.

Our definition of universal forgery is slightly weaker than usual as in [22],
where a successful attacker should be able to forge a valid signature to every
challenged message of the message space. In many situations such as plain RSA
or plain DSA where messages can be blinded, the two notions are equivalent.

! Plain DSA is DSA without a hash function.



Group Structure We need My to form a group with an internal operation ®.
The inverse of an element mex € Moy with respect to this group operation is
simply denoted m_!.

Existentially Forgeable Undeniable Signature We consider an existentially forge-
able undeniable signature scheme UnSign whose associated pair of keys is that
of Ci.e. (ICS,ICS) — Setup®(1¥). We denote the message space M, and the
signature space X,,. We have two probabilistic polynomial time algorithms

Oun “— UnSign(lCS, Mun) and (Myn, Oun) < UnForge(ng)7

where the latter outputs a valid message-signature pair such that my, is uni-
formly distributed. Furthermore, we also have two interactive protocols UnCon-
firm and UnDeny between C and V. The properties are the same as for the
algorithms Confirm and Deny.

We will assume that the function UnSign(KE, ) is balanced on the set X, for
any secret key K. So, the probability for a pair (muy, oun) uniformly picked at
random in My, X Xy, to be valid is equal to v := v/| Xy, |, where v denotes the
number of valid signatures related (and independent) to each myy.

Some examples of such undeniable signatures are the MOVA scheme [17],
the RSA based scheme from [9], the scheme of Chaum [5] based on the discrete
logarithm problem and the generic scheme [18] based on group homomorphisms.
All these schemes present this property provided that we remove some hash
functions or pseudorandom generators. Furthermore, we note that these obtained
signatures schemes are deterministic and therefore cannot satisfy the invisibility
property under a chosen-message attack.

Random Hash Function We consider a hash function h : M — M, which is
collision-resistant. We furthermore assume that h is full-domain i.e., its range is
the full set Mcx. h will be considered as a random oracle.

Random Permutation We consider a public permutation C' : M¢, — M. C
will be considered as a random permutation oracle (see [21,23]) i.e., C' is picked
uniformly at random among all permutations over M. We assume that we can
send queries to the oracle C' and the oracle C 1.

Representation Function We consider a fixed bijection B : My, X Xy — Mex.
In what follows, we will always work with the function F := C o B instead of C
and B separately. Note that F is then a random bijective function.

4.2 The Scheme

The generic construction we proposed is a natural generalization of Chaum’s
scheme [6]. The signer generates a valid message-signature pair with respect to an
existentially forgeable undeniable signature scheme. Then the signer mixes this
pair with a message digest of the message and finally signs the result in a classical



way using ExSign. The validity of this designated confirmer signature will then
rely on the validity of the message-signature pair which can only be confirmed
by the confirmer. Since ExSign is existentially forgeable, anybody could have
produced a signature with an invalid message-signature pair. On the other hand,
when the message-signature pair is valid the designated confirmer signature can
be produced only by the signer. So, without the help of the confirmer it is not
possible to deduce the validity or invalidity of a designated confirmer signature.

Setup Three pairs of keys are generated (KY, KY) — SetupV (1¥) from a security
parameter k, where U € {S,C, V}.

Sign Let m € M be a given message to sign. The signer runs the algorithm
UnForge to obtain a pair (myn, oun) and computes h(m). He then computes
Mex 1= F(Myn, oun) @h(m). The designated confirmer signature of m is then
0 = (Mex, Oex ), Where ey ExSign,CSs (Mex)-

Confirm The verifier and the confirmer check that ExVerify,Cg (Mex, ex) = 1.
Then, they compute me,©h(m) =1, apply F 1, and retrieve (mun, oun). Then
V interacts with C in a proof protocol in which C proves that (mun, oun) is
valid using UnConfirm. If this is verified the protocol outputs 1.

Deny In the denial protocol, the verifier and the confirmer first check that
ExVerify,Cg (Mex, 0ex) = 1 and then retrieve (myn,oun) as in the confirma-
tion. Then V interacts with C in a proof protocol in which C proves that
(Muyn, oun) 1s invalid using UnDeny. If this is verified the protocol outputs 1.

Note that the confirmer could also confirm or deny signatures in an anony-
mous way: he does not need gex nor mey but only my, and o,, which contain
no information about the signer or the message. This could be suitable for some
applications.

5 Security Results

5.1 Security against Adaptive Chosen-Message Existential Forgeries

Theorem 4. The scheme Sign resists against existential forgery under an adap-
tive chosen-message attack provided that

1. h is a random hash function oracle and C/C~' is a random permutation
oracle

2. ExSign resists against universal forgery under a no-message attack

3. walid (myy, oun) pairs are sparse in Myy X Xy, (ie. v < 1)

even if the attacker is the confirmer C.

More precisely, for any attacker A which wins in the game of existential forgery
under an adaptive chosen-message attack against Sign with success probability
Succgg]fﬂa(k) = ¢ using qp, h-queries, qr F-queries, ¢ F ' -queries, and qs Sign
queries, we can construct another attacker B which wins the game of universal
forgery under a no-message attack against ExSign with success probability

B 1 (a7 + q3)?
Pr SUCCUf nma k Z (E _ s THF) 2U
[ ExSlgn,B( )] qF - qn |Mex|




using one run of A.

Proof. For this proof, following Shoup’s methodology [26], we will provide a
sequence of games beginning from the real attack and reach a game allowing to
deduce a universal forgery against ExSign. B is given a challenged public key ICE’
and a challenged message mcpa € Mex for which it has to forge a signature o¢pal
such that EXVerify,CS (Mchal, Ochal) Outputs 1 with a non-negligible probability.

Game 1. Here, we consider the real attack game with the random oracle h and
random function oracle F. First, A receives a challenged public key uniformly
picked at random ICS for which it will have to output an existential forgery.
Since the attacker A can be the confirmer, A gets also the confirmer key pair
(ICS, KE). Note that it can simulate Confirm® and DenyC, so we do not need to
give A an access to the denial and confirmation protocol. The attacker makes
adaptively and in any order the following queries:

- A sends gj, messages my,..., mq, € M to the random oracle i and receives
the corresponding hash values hq,..., hq,.

A sends gz pairs (Mun,1,0un1)s- - - » (Mun,grs Oun,qr) t0 the random function
oracle F and receives the corresponding values fi,..., fq,.

A sends ¢ elements f7,..., f;‘} to the random function oracle F~' and

receives the corresponding values (mf, 1,075, 1)s -+ (Miy 425 T gz )-
; ; O a5

A sends gg messages mj,...,m;, to the signing oracle Sign (with respect
to the challenged public key) and receives the corresponding signatures
O1,...,0q. We assume that ¢ and gr includes the queries made by Sign.

After these queries, A outputs a message m (not queried to the signing oracle)
with a correct forged signature o with success probability Pr[S;] = €. In what
follows, we denote the probability event that A succeeds in the Game i as S;.

Note that the challenged public key B received in the universal forgery game
against ExSign is the one given to A in Game 1. Namely, there is no problem for
doing this since the two keys are uniformly distributed in the same key space.

Game 2. Here, B simulates the random oracle h as well as the random function
F using two appropriate lists h-List and F-List. It will apply the following rules:

— To a query m;, B picks h; uniformly at random in M and adds the element
(my, h;) in h-List if m; is not already in h-List. Otherwise, it simply looks in
the h-List and answers the corresponding h-value.

— To handle the F and F~! oracle queries, it proceeds in a similar way. To
a query (Mun,i,0un,i), it picks f; uniformly at random in My and adds
((Mun,i, Ounyi), fi) in F-List if (myuni, ouns) is not already in F-List . Oth-
erwise, B answers the corresponding f; taken from F-List. Note that the
simulation fails when collisions occur for some distinct f; since F is a bijec-
tive function. It proceeds exactly in the same way for the F~! queries by
using the same list F-List.

Since h is a random oracle and F a random function oracle, we see that the
simulation is perfect except when a collision on outputs of F resp. F~! occurs.



Let CollF be the event that such a collision occurs in Game 1 (equivalently in
Game 2). Obviously, Pr[S; A =CollF] = Pr[S; A =CollF], so we can apply the
Shoup’s lemma [26] and obtain

(a7 + q3)?
Mex|

Game 3. This game is identical as Game 2 except that B simulates the Sign
oracle. Sign must query m{ to h. Let h; be the answer. Sign must also run
UnForge. Let (my,,, ;; 0y, ;) be the forged message-signature pair with respect to
the Unsign scheme. It also runs the probabilistic algorithm ExForge which outputs
a valid message-signature pair (Mex,i, Oex,s) With respect to ExSign. Sign must
also query F with (my,, ;,01, ;) and gets some fs. Then, B simulates the value
fs = F(mi,;, 00,) by setting fo := mex,; © (hy)~'. Note that if (mi, ;, 00, ;)
or fs is an element which lies already in F-List B has to abort the simulation.
Namely, in the first case it could not choose the output value fs while in the
second case it might fail the simulation if fs; has a preimage which is not a valid
message-signature pair in M, X X,. Since the collisions related to the outputs
of F and F~! (even those queried by ExSign) are already cancelled in Game
2, such bad events do not happen here. Hence, we notice that the simulation is
perfect since ExForge outputs an mey ; which is uniformly picked in M. Note
also that the distribution of my, ; is uniform (assumed for UnForge). Thus, for
any h; the distribution of f, is uniform as well and the distribution of the pairs

(Mex,i, Oex,;) is the same as that from Sign. We have

PI“[S3] = PT[SQ]

| Pr[S2] — Pr[S4]| < Pr[CollF] <

Game 4. Here, we would like to obtain a game where the output forged message-
signature pair (m, o) = (m, (Mex, 0ex)) has the two following properties:

— m was queried to the random oracle h (necessarily not through Sign).
— f = Mex ® h(m)~! is an output from a query made to the oracle F (maybe
through Sign).

The first condition does not hold with a probability less than 1/| M| since the
attacker A could not do better than guessing the right h(m). The second one
does not hold if A guessed the right f (i.e., with probability up to 1/|Mex|)
or if it queried f to F~!-oracle and obtained a valid signature pair (Mun,s Tun)s
i.e., with probability up to v since UnSign is balanced. The probability that
this condition does not hold is then less than max(1/|Mex|, ) which is v since
1/v < |Xun| < |Mex|. Therefore,

|PI‘[S4] - PI‘[S3]| S ﬁ +v S 2u.

Game 5. B picks j €y {1,...,qn}, ¢ €u {1,...,qx} at the beginning and it
succeeds if m was the jth query to h and mex ® h(m)~! was the output from
the fth query to F. We have,

1
qn - 4F

PI‘[S5] = PI‘[S4]



Game 6. Here, B simulates the output h; by setting h; := f[l ® Mehal- This
simulation is perfect because mepha is an element uniformly picked at random

and is unused so far. Thus,
Pr[Se] = Pr[Ss].
Finally, we notice that A forged an ExSign signature to the message mcpa,; if

it succeeds in the Game 6 since m = m;, f = f; and Mmex = Mcpal in this case.
We then have Pr[SuccEfxgigT’%(k)] = Pr[S¢]. Thus,

((qf“f)2> 0

PrlS uf—.nma ) >
I‘[ uccExSlgmB( )] |Mex|

T qF - qn

5.2 Invisibility to Lunchtime Chosen-Message Distinguisher

Theorem 5 (Invisibility). Assume that h and C are fized and that oy, is
uniformly distributed for any fized key when myy, is uniformly distributed. For
any invistbility distinguisher D under a lunchtime chosen-message attack against
Sign with advantage € > 0, there exists an invisibility distinguisher UD under a
lunchtime known-message attack against UnSign with advantage €' > /2 which
uses one run of D.

Proof. First UD is fed with S issued from (KS,KS) — Setup®(1%). Then, UD
runs (K5, K5) «— Setup®(1%) and transmits KS,K5,KS to D. The answers of
the oracle queries from D will be simulated by UD. Since D has the signer secret
key K3, it does not need any access to a signing oracle. UD simulates the oracle
queries to the confirmation and denial protocol as follows:

- To a message-signature pair (m, (Mex, ex) ), UD checks first that (Mex, ex) 18
a valid pair with respect to ExSign. It retrieves the corresponding (myn, oun)
and forwards this query to the confirmation (or denial) protocol oracle with
respect to UnSign.

At a time, D sends two messages mg, my € M to UD. UD receives from its
challenger two messages m’ mllu1 € My, and a signature oy, € Yy, (The chal-

un’

lenger flipped a coin b € {0,1} and set oy, < UnSign(m?,)). Then, UD picks
two random bits by, by €r {0, 1}, sets mex = F(mb2, 0un) © h(my,), computes
Tex = ExSignys (mex) and sends o = (Meyx, 0ex) to D. Then, D answers a bit b”
to UD. Finally, UD answers a bit b’ = by Sby Db (If D aborts, we pick a random
b”.) to its challenger. It remains to compute the probability of success of UD.
To this end, we compute Pr[b’ = b] = Pr[)/ = bA by = b] + Pr[t) = b A by # b].
We also have

Prlb = b Aby #b] = Pr[t” = b by @ by Aby # b] = Pr[t” = —by|by # b] -

N |

When by # b then (m2, 0,y,) is uniformly distributed and independent from by,
hence b” is independent from by. Thus, Pr[b’ = b A by # b] = 1/4. Finally, since
Pr[t/ = bAby =b] = (1/24+¢)Pr[be = b] = 1/2(1/2 4 €) we get Pr[p) = b] =
1/24¢/2. O

10



The scheme Sign does not satisfy the stronger adaptive invisibility notion
defined in [3]. Namely, after having received the challenged signature o, D could

deduce the two pairs (m9,,00)), (ml,, ol ) which would correspond to mg and

un’ un
my. Then, D generates a signature o’ on another message m’ by using (m?2,09)
and queries the pair (m/,0’) to the confirmation and denial oracle. Depending
on the answer, D deduces whether (m9 00 ) is valid or not. From this, we see
that D wins the invisibility game under an adaptive attack.

The fundamental problem relies on the fact that the attacker can always
retrieve the corresponding pair (myun,oun) (as any verifier) from a message-
signature pair with respect to Sign. He can then sign a new message m’ by
reusing the pair (myn, oun) and query the obtained pair to the Confirm or Deny
oracle. Assuming that the verifier has to retrieve (mupn,oun), the only way to
thwart such an attack is to make sure that the attacker cannot generate a new
signature with another message m’ with the same pair (myn, oun). This seems
to imply that (mun,oun) has to depend on m. Moreover, the verifier should not
be able to verify how (mun, oun) was generated since it would trivially break the
invisibility. This leads us to believe that the signer has to encrypt an element
with the secret confirmer key such as in the scheme proposed in [3]. Obviously,
the above discussion motivates the fact that we should strongly modify the gen-
eralized Chaum’s scheme, in particular the confirmation (resp. denial) protocol
cannot be achieved only with UnConfirm (resp. UnDeny).

5.3 Other Security Properties

The other security properties of our scheme are easier to prove, namely the
completeness of the confirmation resp. denial protocol is straightforward. The
other properties such as the soundness are inherited from the undeniable sig-
nature scheme. The non-transferability is also inherited. The non-coercibility
is obtained if the signer deleted intermediate computations from UnForge. In
this case, the invisibility of the undeniable signature scheme applies. Note that
receipt-freeness is not guaranteed.

6 A Practical Example

Here, we propose a practical realization of the presented construction quite sim-
ilar to that of Chaum [6]. First, we consider the Chaum’s undeniable signature
scheme [5] for UnSign. Let p be a prime integer of 1024 bits and g be a public
generator of Z*. Then, (KE,KS) = (¢, g° mod p) := (¢, h) for a ¢ €y Z;_,. We
recall that Chaum’s undeniable signature of a message mun € Zj, is my, mod p.
Hence, UnForge can be implemented by picking a random element r € Z,_; and
outputting the pair (myn, oun) := (¢" mod p, A" mod p). The random function F
applied on (Mun, 0un) can be implemented by computing an AES with a fixed key
in a kind of CBC mode on myy||oun by B(Mun||oun) = (20| ... ||z15) where z; €
{O, 1}128 and C(.I‘QH PN ||$15) = (3716” ‘e H$31) with €Tr; = AES(JEZ‘_H;) D xi—1.

11



Note that we must choose p close enough to 2'°24. The hash function A can be in-
stantiated with SHA-1 by h(m) = truncegss (SHA-1(1||m)]| ... ||SHA-1(13||m)),
where truncggsg outputs the 2048 most significant bits of the input. The group
operation ® can be replaced by the XOR operation @ on the set {0,1}2048. We
finally take the plain DSA scheme for ExSign. Let ¢; be a prime integer close
to 22948 a large prime number go = ag; + 1 and a generator of Z7, whose a-th
power is denoted as gq. Then, (K$,K5) = (z,g? mod ¢2) for 2 €y Z7,. Then,

Mex+TT
k

Oex = (1,8), where r = (géC mod ¢2) mod ¢; and s = mod ¢; for a random

k ey ZZI.

7 On Feasibility Results based on Cryptographic
Primitives

7.1 Discussion

This subsection provides a discussion on the relevance of the primitives used
in the generalized Chaum’s designated confirmer signature scheme. Namely, we
would like to explain why this construction is possible although a previous re-
sult of Okamoto [19] seems at the first glance to provide strong evidence of its
impossibility.

The study of relations between the cryptographic primitives always played
a central role in cryptography. In particular, it allows to clarify the kind of
primitives required to achieve the security of a given construction. Examples of
well-known basic primitives are one-way function, trapdoor one-way function, or
trapdoor predicates which were introduced by Goldwasser and Micali [10]. Here,
we will focus on two classes of equivalent primitives, that of one-way functions
and that of trapdoor predicates. These two classes contain respectively two ma-
jor cryptographic primitives, namely the digital signatures resp. the public-key
encryption. Rompel [24] proved that one-way functions are equivalent to signa-
tures and Goldwasser and Micali [10] showed the equivalence between trapdoor
predicates and public-key encryption. Since then, several cryptographic primi-
tives have been shown to belong to one of these classes, e.g. undeniable signatures
exist if and only if digital signatures exist [1].

Soon after their invention, designated confirmer signatures were proved to
belong in the public-key encryption class [19]. This showed that despite of their
similarities to undeniable signatures these two primitives are not equivalent.
Separation between these two classes was proved by Impagliazzo et al. [13] in
the black-box case, i.e., when the primitives are considered as black-box. This is
quite relevant since almost all reductions considered in cryptography are black-
box. Hence, this shows that the construction of a designated confirmer signature
requires a primitive equivalent to the public-key encryption.

Our proposed construction seems only to be based on primitives belonging
to the digital signatures class. Actually, this comes from an insufficient precise
way to characterize cryptographic primitives. For instance, when we talk about
a digital signature scheme, we mean a signature which is resistant to existen-
tial forgery under an adaptive chosen-message attack. Similarly an undeniable

12



signature is meant to be implicitly secure in terms of existential forgery attacks
and signatures invisibility. In this generalized Chaum’s scheme, we have consid-
ered a special kind of undeniable signature which is existentially forgeable but
remains invisible under a lunchtime known-message attack. In the next subsec-
tion, we prove that the existence of such a primitive indeed implies the existence
of a public-key encryption semantically secure under a chosen-plaintext attack
(IND-CPA). So we prove that undeniable signatures may belong to two different
classes depending on the security properties we require. Paradoxically, although
this kind of undeniable signature satisfies weaker security properties than usual,
it belongs to a stronger class namely that of public-key encryption. Intuitively,
this can be explained by the fact that it seems more difficult for an existen-
tially forgeable undeniable signature to remain invisible than for an undeniable
signature which is resistant to existential forgery attacks.

7.2 UnSign and Public-Key Encryption

We explain here how we can construct an IND-CPA public-key cryptosystem
from the existentially forgeable undeniable signature scheme UnSign. We recall
that UnSign is assumed to satisfy invisibility under a lunchtime known-message
attack (this was required to prove that Sign is invisible under a lunchtime chosen-
message attack). For the sake of simplicity, this cryptosystem will encrypt only
one bit at a time. We denote the encryption scheme PKE. It is composed of
three polynomial time algorithms which are the key generator KGen, the encryp-
tion algorithm Enc, and the decryption algorithm Dec. The scheme is inspired
from [19].

KGen The key generator KGen generates a pair of key (pk, sk) by calling the key
generator of UnSign. It computes (K, KE) «— Setup®(1%) from the security
parameter k and sets (pk, sk) := (KS,KS).

Enc Let b € {0,1} a bit to encrypt. If b = 0, we call the probabilistic algo-
rithm UnForge to generate a valid pair (mun,oun) < UnForge(KS). The
pair (myn, oun) is set to be the ciphertext of b. If b = 1, we pick a pair
(Mun, 0un) €Ev Mun X Xun uniformly at random. The pair (myn, oun) is the
ciphertext of b in this case.

Dec Let (mun,0un) be a ciphertext. Using the secret key sk = KE, it suffices
to simulate UnConfirm or UnDeny to determine whether this pair is valid or
not. If the pair is valid the decrypted ciphertext is 0, else it is 1.

We prove here that PKE is IND-CPA secure provided that UnSign is invisible
under a lunchtime known-message attack. Assume the existence of an adversary
A which wins in an IND-CPA game against PKE with a non-negligible advantage
. Consider an adversary B which takes advantage of A in order to break the
invisibility of UnSign under a lunchtime known-message attack.

At the beginning of the invisibility game, B receives a challenged pair of key
(KS,KE) and playing the role of the challenger in the IND-CPA game forwards
the same key pair to A. After a given time, A will trivially send two bits 0,1

13



., mk with
a signature oy,. B sends the challenged pair (mﬂn,(run) to A. Note that this
challenge is perfectly simulated except when o, is a valid signature to both m%,
and ml . Such an event occurs with a probability v. Otherwise, the probability
for (m9,,0un) to be a valid message-signature pair is exactly 1/2. Then, A

answers a bit b. This bit b is also the answer of B to its challenger. Thus, the
advantage ¢ of B satisfies ¢’ > ¢ — v.

to B. After a lunchtime, B will receive two challenged messages m?

8 Conclusion

We revisited the designated confirmer signature scheme of Chaum and extended
this one in a natural way in a generic scheme which transforms an undeniable
signature scheme into a designated confirmer signature scheme. In the random
oracle model, we proved that this construction is resistant against existential
forgery under an adaptive chosen-message attack in which the attacker is the
confirmer. It satisfies invisibility in the non-adaptive scenario in which the at-
tacker is the signer. Our results trivially apply to the original Chaum scheme.
Selective convertibility can also be included in this construction. As far as we
know this construction is the only one which is based on a generic undeniable sig-
nature scheme and which is proven existentially unforgeable against an attacker
having the confirmer’s secret key. Finally, we proved that an existentially un-
forgeable undeniable signature which is invisible under a known-message attack
scheme lies in the class of cryptographic primitives equivalent to the public-key
encryption.

References

1. J. Boyar, D. Chaum, I. Damgard, and T. Pedersen, Convertible Undeniable Sig-
natures, Advances in Cryptology - Crypto 90, LNCS 537, pp. 189-205, Springer,
1991.

2. G. Brassard, D. Chaum, and C. Crépeau, Minimum Disclosure Proofs of Knowl-
edge, Journal of Computer and System Sciences, vol. 37 (2), pp. 156-189, 1988.

3. J. Camenisch and M. Michels, Confirmer Signature Schemes Secure against Adap-
tive Adversaries, Advances in Cryptology - Eurocrypt 00, LNCS 1807, pp. 243-
258, Springer, 2000.

4. J. Camenisch and V. Shoup, Practical Verifiable Encryption and Decryption of
Discrete Logarithms, Advances in Cryptology - Crypto '03, LNCS 2729, pp. 126-
144, Springer, 2003.

5. D. Chaum, Zero-Knowledge Undeniable Signatures, Advances in Cryptology - Eu-
rocrypt '90, LNCS 473, pp. 458-464, Springer, 1990.

6. D. Chaum, Designated Confirmer Signatures, Advances in Cryptology - Euro-
crypt '94, LNCS 950, pp. 86-91, Springer, 1995.

7. D. Chaum and H. van Antwerpen, Undeniable Signatures, Advances in Cryptology
- Crypto ’89, LNCS 435, pp. 212-217, Springer, 1989.

8. S. Galbraith and W. Mao, Invisibility and Anonymity of Undeniable and Confirmer
Signatures, CT-RSA 2003, LNCS 2612, pp. 80-97, Springer, 2003.

14



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. R. Gennaro, T. Rabin, and H. Krawczyk, RSA-Based Undeniable Signatures, Jour-

nal of Cryptology, vol. 13 (4), pp. 397-416, Springer, 2000.

S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and
System Sciences, vol. 28 (2), pp. 270-299, 1984.

S. Goldwasser, S. Micali, and R. Rivest, A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks, SIAM Journal on Computing, vol. 17 (2),
pp. 281-308, 1988.

S. Goldwasser and E. Waisbard, Transformation of Digital Signature Schemes into
Designated Confirmer Signatures Schemes, TCC ’04, LNCS 2951, pp. 77-100,
Springer, 2004.

R. Impagliazzo and S. Rudich, Limits on the Provable Consequences of One-way
Permutations, 21st Annual ACM Symposium on Theory of Computing, pp. 44-61,
ACM Press, 1989.

M. Jakobsson, K. Sako, and R. Impagliazzo, Designated Verifier Proofs and Their
Applications, Advances in Cryptology - Eurocrypt '96, LNCS 1070, pp. 143-154,
Springer, 1996.

B. Libert and J.-J. Quisquater, Identity Based Undeniable Signatures, CT-RSA 04,
LNCS 2964, pp. 112-125, Springer, 2004.

M. Michels and M. Stadler, Generic Constructions for Secure and Efficient Con-
firmer Signatures Schemes, Advances in Cryptology - Eurocrypt '98, LNCS 1403,
pp. 406-421, Springer, 1998.

J. Monnerat and S. Vaudenay, Undeniable Signatures Based on Characters,
PKC ’04, LNCS 2947, pp. 69-85, Springer, 2004.

J. Monnerat and S. Vaudenay, Generic Homomorphic Undeniable Signatures, Ad-
vances in Cryptology - Asiacrypt '04, LNCS 3329, pp. 354-371, Springer, 2004.
T. Okamoto, Designated Confirmer Signatures and Public-key Encryption are
FEquivalent, Advances in Cryptology - Crypto 94, LNCS 839, pp. 61-74, Springer,
1994.

T. Okamoto and D. Pointcheval, The Gap-Problems: A New Class of Problems
for the Security of Cryptographic Schemes, PKC ’01, LNCS 1992, pp. 104-118,
Springer, 2001.

D. H. Phan and D. Pointcheval, Chosen-Cliphertext Security without Redundancy,
Advances in Cryptology - Asiacrypt '03, LNCS 2894, pp. 1-18, Springer, 2003.
D. Pointcheval and J. Stern, Security Arguments for Digital Signatures and Blind
Signatures, Journal of Cryptology, vol. 13 (3), pp. 361-396, 2000.

R. Rivest, A. Shamir, and A. Tauman, How to Leak a Secret, Advances in Cryp-
tology - Asiacrypt 01, LNCS 2248, pp. 552-565, Springer, 2001.

J. Rompel, One-Way Functions are Necessary and Sufficient for Secure Signatures,
22nd Annual ACM Symposium on Theory of Computing, pp. 387-394, ACM Press,
1990.

K. Sakurai and S. Miyazaki, An Anonymous Electronic Bidding Protocol Based on
a New Convertible Group Signature Scheme, ACISP ’00, LNCS 1841, pp. 385-399,
Springer, 2000.

V. Shoup, Sequences of Games: a Tool for Taming Complexity in Security Proofs,
Cryptology ePrint Archive, Report 2004/332, http://eprint.iacr.org/, 2004.

15



