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Abstract. We introduce a new computational problem related to the
interpolation of group homomorphisms which generalizes many famous
cryptographic problems including discrete logarithm, Diffie-Hellman, and
RSA. As an application, we propose a generic undeniable signature scheme
which generalizes the MOVA schemes. Our scheme is generic in the sense
that we transform a private group homomorphism from public groups G
to H (the order of H being public) into an undeniable signature scheme.
It is provably secure in the random oracle model provided that the inter-
polation problem is hard and it offers the advantage of making the signa-
ture size arbitrarily short (depending on a security level). We (im)prove
some security results from MOVA. We also propose a new example with
complexity similar to RSA and with 3-byte signatures.

1 Introduction

An undeniable signature scheme is similar to a classical digital signature except
that the recipient of a message cannot verify its validity alone: he needs to
interact with the signer in order to be convinced of the validity of the signature.
This opposes to the so called universal verifiability of classical digital signatures
where anybody knowing the signer’s public key is able to verify the signature at
any time. In some applications such as signing a contract, it is desirable to keep
the signer’s privacy by limiting the ability to verify this signature. However, an
undeniable signature does not abandon the non-repudiation property. Indeed,
in case of a dispute, the signer could be compelled by an authority to prove
the invalidity of a signature, otherwise this would be considered as an attempt
of denying a valid signature. An undeniable signature scheme is composed of a
signature generation algorithm, a confirmation protocol to prove the validity of
a signature, and a denial protocol to prove the invalidity of an invalid signature.

Since the invention of the first undeniable signature scheme proposed by
Chaum and van Antwerpen [9], a certain amount of work has been dedicated to
its development and different improvements [5,7,8,11,12]. Until the proposition
of an undeniable signature scheme based on RSA by Gennaro et al. [15], all
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previous undeniable signatures were based on the discrete logarithm problem.
More recently, three undeniable signatures based on different problems have been
proposed. The first one is based on pairings [18], the second one is based on a
quadratic field [4], and the third one (MOVA) is based on characters [19].

In traditional digital signature schemes, the security collapses when the sig-
nature is too short because of universal verifiability: an attacker can try to guess
a signature until it is valid in order to forge it. One advantage of undeniable
signatures is that the security smoothly decreases with the signature length. As
an example, we can think of 20-bit signatures which cannot be forged but with
a probability of success of 2−20. The forger can increase it in an on-line attack,
but this can easily be detected and thwarted. So, undeniable signatures could in
principle be arbitrarily small e.g. as small as a MAC, although no such signatures
were proposed so far except MOVA signatures.

In this paper, we provide a new computational problem called Group Homo-
morphism Interpolation (GHI) problem whose solution consists in finding the
image of a given point under an homomorphism which interpolates some given
points. This generalizes and improves the MOVA scheme based on characters.
Section 2 provides some theoretical results about the GHI problem. Section 3
contains several interactive proof protocols and some related security results that
will be used for our undeniable signature from Section 4. Section 5 is devoted to
a new example and further discussions. Finally, Section 6 concludes.

2 The Group Homomorphism Interpolation Problem

2.1 Problem Definitions

Given two Abelian groups G, H, and S := {(x1, y1), . . . , (xs, ys)} ⊆ G×H, we
say that the set of points S interpolates in a group homomorphism if there exists
a group homomorphism f : G −→ H such that f(xi) = yi for i = 1, . . . , s. We
say that a set of points B ⊆ G×H interpolates in a group homomorphism with
another set of points A ⊆ G×H if A∪B interpolates in a group homomorphism.
We state here the Group Homomorphism Interpolation problem (GHI problem)
and its decisional problem (GHID problem).

S-GHI Problem (Group Homomorphism Interpolation Problem)
Parameters: two Abelian groups G and H, a set of s points S ⊆ G×H.
Input: x ∈ G.
Problem: find y ∈ H such that (x, y) interpolates with S in a group

homomorphism.

S-GHID Problem (GHI Decisional Problem)
Parameters: two Abelian groups G and H, a set of s points S ⊆ G×H.
Input: a point (x, y) ∈ G×H.
Problem: does (x, y) interpolate with S in a group homomorphism?

We also consider the following problems.
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d-MGGD Problem (Modular Group Generation Decisional Problem)
Parameters: an Abelian group G, an integer d.
Input: a set of values S1 = {x1, . . . , xs} ⊆ G.
Problem: does S1 modulo dG span G/dG.

(d, S1)-MSR Problem (Modular System Representation Problem)
Parameters: an Abelian group G, a set S1 = {x1, . . . , xs} ⊆ G, an

integer d.
Input: x ∈ G.
Problem: find a1, . . . , as ∈ Z such that x ∈ a1x1 + · · ·+ asxs + dG.

d-Root Problem (dth Root Problem)
Parameters: an Abelian group G, an integer d.
Input: x ∈ G.
Problem: find r ∈ G such that x = dr.

2.2 Preliminaries

Here is a first straightforward condition to solve the GHID problem.

Lemma 1. Let G, H be two finite Abelian groups. We denote by d the order
of H. The set S = {(x1, y1), . . . , (xs, ys)} ⊆ G × H interpolates in a group
homomorphism if and only if for any a1, . . . , as ∈ Z such that a1x1+ · · ·+asxs ∈
dG we have a1y1 + · · ·+ asys = 0.

Let us now consider uniqueness criteria. We first notice that when the x-coordinates
of points in S modulo dG generate G/dG (hence satisfy the MGGD problem),
then there is at most one interpolating homomorphism. The following result says
that this is a necessary condition as well.

Lemma 2. Let G, H be two finite Abelian groups. We denote d the order of H.
Let x1, . . . , xs ∈ G which span G′. The following properties are equivalent. In
this case, we say that x1, . . . , xs H-generate G.

1. For all y1, . . . , ys ∈ H, there exists at most one group homomorphism f :
G −→ H such that f(xi) = yi for all i = 1, . . . , s.

2. There exists a unique group homomorphism ϕ : G −→ H such that ϕ(xi) = 0
for i = 1, . . . , s, namely ϕ = 0.

3. The set Hom(G/G′,H) of all group homomorphisms from G/G′ to H is
restricted to {0}.

4. gcd(#(G/G′), d) = 1.
5. G′ + dG = G.

Note that the criterion 4 suggests that H is only involved by the prime factors
of its order. In what follows the smallest prime factor p will be important. Note
that if G = H, these criteria mean that x1, . . . , xs generate G.

We can often meet the GHI and GHID problems in cryptography as the
following examples suggest.
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Example 3. We take a cyclic group G of order q, H = Zq, and a generator g of
G. The set S = {(g, 1)} interpolates in a unique group homomorphism, and the
GHI problem is exactly the discrete logarithm problem.

Example 4. We take a cyclic group G = H, and a generator g of G. For any
a ∈ Z, S = {(g, ag)} interpolates in a unique group homomorphism: the ex-
ponentiation to the power a. The GHI and GHID problems are exactly the
Diffie-Hellman problem [13] and the Diffie-Hellman Decisional problem.

Example 5. Let n = pq such that p, q are different odd primes and H = {−1,+1}.
We let x1, x2 ∈ Z∗n be such that x1 is a quadratic residue modulo p and not mod-
ulo q, and that x2 is a quadratic residue modulo q, and not modulo p. We notice
that S = {(x1, 1), (x2,−1)} interpolates in a unique group homomorphism which
is (·/p). Since it is easy to compute (·/n), the quadratic residuosity problem [16]
with the information x1 and x2 is equivalent to the GHI and GHID problems.

Example 6. Here, we consider the well known RSA cryptosystem [21]. Let n = pq
be an RSA modulus and G = H = Z∗n. Let f : Z∗n → Z∗n be defined by f(x) =
xe mod n for an exponent e such that gcd(e, ϕ(n)) = 1 [21]. Given enough many
pairs (xe

i mod n, xi) ∈ Z∗n×Z∗n, i = 1, . . . , s, for the first coordinates to generate
Z∗n, the RSA decryption problem is solved by a GHI oracle.This application of
GHI problem to the decryption problem can be adapted to every homomorphic
encryption scheme, e.g. Paillier [20].

Example 7. Given d ∈ {2, 3, 4} and given an integer n such that d divides ϕ(n),
we let G = Z∗n and H = Zd. The GHI problem is the MOVAd problem [19].

Example 8. We show here how we can apply the GHI problem to the Bilinear
Diffie-Hellman Problem (BDHP). Let ê : G1 × G1 → G2 be a bilinear, non-
degenerate and computable mapping, where G1 and G2 are cyclic groups of
order a large prime p. Let P be a generator of G1, we can state the BDHP as
follows: given three random elements aP , bP and cP ∈ G1, compute ê(P, P )abc.
(G1 resp. G2 is written additively resp. multiplicatively.) BDHP is equivalent
to GHI problem with S = {(P, ê(aP, bP ))} and x1 = cP .

Note that Examples 4,5,6,7,8, include trapdoors in order to interpolate the
group homomorphism. Except Examples 4,8, they further include trapdoors in
order to solve the MSR problem. Also note that the order d of H is publicly
known in Examples 3,4,5,7,8. It can further be quite small in Examples 5,7. In
what follows we focus on publicly known d and on trapdoor homomorphisms.
We will also consider the following example inspired by [1].

Example 9. Let n = pq such that p = rd + 1 and q are prime, gcd(r, d) = 1,
gcd(q − 1, d) = 1, with d small prime. We take G = Z∗n and H = Zd. We can
easily compute a group homomorphism by first raising to the power r(q − 1)
then computing a discrete logarithm in a small subgroup.

We finally provide a useful lemma to sample group elements.
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Lemma 10. Let G, H, d be defined as in Lemma 2. Let x1, . . . , xs ∈ G which
H-generate G. The following mapping from G× Zs

d to G is balanced.

g : (r, a1, . . . , as) 7−→ dr + a1x1 + . . . + asxs

2.3 Problem Reductions

We assume that S interpolates in a group homomorphism. We notice that the
S-GHI problem can be solved with a single oracle call to a (d, S1)-MSR oracle
where S1 denotes the set of all x coordinates for points in S.

Similarly, the S-GHID problem can be probabilistically solved with a (d, S1)-
MSR oracle by using Lemma 1 and Lemma 10: we generate a random x′ =
ax + dr + a1x1 + · · · + asxs, we send it to the MSR oracle who will answer
a′1, . . . , a

′
s, and we check whether ay + (a1 − a′1)y1 + · · ·+ (as − a′s)ys = 0.

Note that once we have witnesses to find the group invariants of G and H,
it becomes easy to solve all problems. So GHI and GHID are in NP∩co-NP.

2.4 Problem Approximations

In this section we present our most important results. They are inspired from
the theory of checkable proofs [2,3] and linear cryptanalysis.

Lemma 11. Given two finite Abelian groups G and H, and a set of s points
S = {(xi, yi) | i = 1, . . . , s}, we assume that x1, . . . , xs H-generate G. We let
d be the order of H and p be its smallest prime factor. We assume that there
exists a function f : G −→ H such that

ρ := Pr
(r,a1,...,as)∈U G×Zs

d

[f(dr + a1x1 + · · ·+ asxs) = a1y1 + · · ·+ asys] >
1
p
.

The set of points (xi, yi) interpolates in a group homomorphism. Furthermore,
given a random x ∈U G, the value y = f(x) matches the unique interpolation
with probability ρ.

This improves Theorem 13 from [19] where we have 1/2 instead of 1/p.

Proof. Let K ⊆ Zs
d be the set of all (a1, . . . , as) such that a1x1+ · · ·+asxs ∈ dG.

We notice that the representation of any G element as a combination of x1, . . . , xs

is uniquely defined modulo K. Following Lemma 1, we only have to prove that
we have a1y1 + · · · + asys = 0 for any (a1, . . . , as) ∈ K. This way, the value
g(x) = a1y1 + · · ·+ asys is uniquely defined by x = dr + a1x1 + · · ·+ asxs and
g is a group homomorphism which corresponds to f with probability ρ.

Let us consider a random (r, a1, . . . , as) ∈U G × Zs
d. ρ is the probability

that f(dr + a1x1 + · · · + asxs) equals a1y1 + · · · + asys. This probability is
also the average over all possible cosets of Zs

d/K of the same probability when
(a1, . . . , as) is sampled in the coset only. Hence we deduce the existence of a
coset (a1, . . . , as) + K such that for (r, b1, . . . , bs) ∈U G×K we have

Pr[f(dr + (a1 + b1)x1 + · · ·+ (as + bs)xs) = (a1 + b1)y1 + · · ·+ (as + bs)ys] ≥ ρ.
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Note that a1x1 + · · ·+asxs is now a constant x and that dr+b1x1 + · · ·+bsxs

can be written dr′ where r′ is uniformly sampled in G and independent from
b1, . . . , bs. Hence, there exists r′ such that

Pr
(b1,...,bs)∈U K

[f(dr′ + x) = (a1 + b1)y1 + · · ·+ (as + bs)ys] ≥ ρ.

So we have
Pr

(b1,...,bs)∈U K
[b1y1 + · · ·+ bsys = constant] >

1
p
.

Since (b1, . . . , bs) 7→ b1y1 + · · · + bsys is a group homomorphism from K to a
subgroup of H it must be a balanced function. Its kernel is either a subgroup of
size at least p or the trivial subgroup {0}. Hence, the probability must actually
be 1 and we have b1y1 + · · ·+ bsys = 0 for all (b1, . . . , bs) ∈ K. ut

The next result says that f can be used in order to solve the GHI problem.

Lemma 12. Given two finite Abelian groups G and H, and a set of s points
S = {(xi, yi) | i = 1, . . . , s}, we assume that x1, . . . , xs H-generate G. We
assume that we are given the order d of H whose smallest prime factor is p and
that we can sample elements in G with a uniform distribution. We assume that
we have an oracle function f : G −→ H such that

Pr
(r,a1,...,as)∈U G×Zs

d

[f(dr + a1x1 + · · ·+ asxs) = a1y1 + · · ·+ asys] =
1
p

+ θ

with θ > 0. Let ε > 0 be arbitrarily small. There exists a group homomorphism
which interpolates S and which is computable within 4θ−2 log(p/ε) oracle calls
with an error probability less or equal to ε.

Note that this substantially improves Theorem 8 from [19] where we basically
have 11/12 instead of 1/p. It was further conjectured in [19] that we could replace
it by 1/2. We made here a more precise result.

Proof (sketch). Due to Lemma 11, the homomorphism g exists and we have
Prx∈U G[f(x) = g(x)] = p−1 + θ. We use the same techniques which are used in
linear cryptanalysis and consider the following algorithm.

Input: x ∈ G
1: repeat
2: pick r ∈ G, a1, . . . , as ∈ Zd at random
3: y = f(x + dr + a1x1 + · · ·+ asxs)− a1y1 − · · · − asys

4: c = 0
5: for i = 1 to n do
6: pick r ∈ G, a1, . . . , as, a ∈ Zd at random
7: if f(dr + a1x1 + · · ·+ asxs + ax) = a1y1 + · · ·+ asys + ay (T)

then
8: c = c + 1
9: end if
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10: end for
11: until c > τn
Output: y

We choose n = 4θ−2(p−1 + θ) log(p/ε) and τ = p−1 + 1
2θ and we estimate the

error probability of the acceptance test. We consider two types of error:

ε1 = Pr
x∈U G

[c ≤ τn | y = g(x)] ε2 = Pr
x∈U G

[c > τn | y 6= g(x)]

We will now estimate these two values and show that they are negligible. If
y 6= g(x), then the test (T) works with probability t2 ≤ 1/p due to Lemma 11.
We also notice that if y = g(x), the probability that the test works is 1

p + θ.
Hence, using the central limit theorem we obtain

ε1 ≈ Φ

(
√

n
τ − p−1 − θ√

(p−1 + θ)(1− p−1 − θ)

)
ε2 ≈ Φ

(
−
√

n
τ − t2√
t2(1− t2)

)
,

when n is large enough and where Φ denotes the distribution function of the
standard normal distribution. By looking at the logarithmic derivative of the
function f(t) = (τ − t)/(

√
t(1− t)) and noticing that this one is negative on the

interval [0, τ ] we deduce that

ε2 ≤ Φ

(
−
√

n
τ − p−1√

p−1(1− p−1)

)
.

Using τ = p−1 + 1
2θ provides

ε2 ≤ Φ

(
−
√

n
θ

2
√

p−1(1− p−1)

)
≈ 1√

2π

(
e

−nθ2

4(p−1(1−p−1))

)
,

where the last approximation holds when n is large enough (ε small). Now, we
substitute the expression of n in the above inequality and we obtain

ε2 ≤
1√
2π

(
ε

p

) p+p2θ
p−1

.

Since p+p2θ
p−1 ≥ 1 and ε

p < 1 when ε is small, we finally get ε2 ≤ ε/(p
√

2π) ≤ ρε/2
where ρ = p−1 + θ. In a similar way, we can show that ε1 ≤ ε/2. It remains
to compute the complexity and the error probability of the algorithm. At first,
we observe that the probability α that c ≤ τn in the algorithm is equal to
ρε1+(1−ρ)(1−ε2). From the estimate of ε1, ε2, we see that α ≈ 1−ρ. Moreover,
the number of iterations is equal to

∑∞
i=1 iαi−1(1−α) = 1/(1−α) ≈ 1/ρ. Hence,

the complexity is n/ρ = 4(log(1/ε) + log(p))/(ρ− 1
p )2. The probability of error

is given by
∑∞

i=1 αi−1(1− ρ)ε2 ≈ (1− ρ)/ρε2 ≤ ε2/ρ ≤ ε/2. ut
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3 Interactive Proof Protocol

3.1 Proof for the GHID Problem

Let G, H, and S = {(g1, e1), . . . , (gs, es)} be parameters of a GHI problem, and
let d be the order of H. We assume that we have a prover who wants to convince
a verifier that he knows an interpolating group homomorphism f : G −→ H for
S. Let ` be an integer. He performs the following interaction with a verifier.

GHIproof`(S)
Parameters: G, H, d
Input: `, S = {(g1, e1), . . . , (gs, es)} ⊆ G×H
1: The verifier picks ri ∈ G and ai,j ∈ Zd at random for i = 1, . . . , `

and j = 1, . . . , s. He computes ui = dri + ai,1g1 + · · · + ai,sgs and
wi = ai,1e1 + · · ·+ ai,ses for i = 1, . . . , `. He sends u1, . . . , u` to the
prover.

2: The prover computes vi = f(ui) for i = 1, . . . , `. He sends a commit-
ment to v1, . . . , v` to the verifier.

3: The verifier sends all ri’s and ai,j ’s to the prover.
4: The prover checks that the ui’s computations are correct. He then

opens his commitment.
5: The verifier checks that vi = wi for i = 1, . . . , `.

From a practical point of view, the verifier can generate the ri’s and ai,j ’s in a
pseudorandom way from a seed and simply disclose the seed in the third step of
the protocol. Further note that if ds is large enough, then the verifier can send
h(w1, . . . , ws) ⊕ seed (where h is a hash function) in his first message so that
the complete protocol can run in 2 moves instead of 4. In the second move, the
prover simply sends seed.

Note that we need a commitment scheme here, e.g. the trapdoor commitment
scheme proposed by Bresson et al. [6]. Note that using trapdoor commitment
with the verifier’s public key strengthens our protocols by providing the non-
transferability property [17].

Theorem 13. Assuming that g1, . . . , gs H-generate an Abelian group G, let d
be an integer and e1, . . . , es ∈ H, where H is an Abelian group of order d. Let
p be the smallest prime factor of d. We consider the GHIproof`(S) protocol with
S = {(g1, e1), . . . , (gs, es)} ⊆ G×H.

i. Completeness: assuming that the prover and the verifier are honest, the pro-
tocol always succeeds.

ii. Zero-knowledge: assuming that the commitment scheme is perfectly hiding,
the above protocol is perfectly black-box zero-knowledge against any verifier.

iii. Proof of membership: assuming that the protocol succeeds with probability
greater than p−` with a honest verifier, then S interpolates in a group ho-
momorphism.
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iv. Proof of knowledge: for any θ > 0, assuming that the protocol succeeds with
probability greater than (p−1 + θ)` with a honest verifier and that the com-
mitment scheme is extractable, for any ε > 0 there exists an extractor with
a time complexity factor O(log(1/ε)) which can compute an interpolating
group homomorphism from the prover with probability at least 1− ε.

Proof (sketch). Property i is quite clear. Property ii is proven by constructing
a simulator for the transcript of the protocol without the secret of the prover.
Property iii directly follows from Lemma 11. For Property iv, we use Lemma 11
and Lemma 12. ut

3.2 Proof for the co-GHID Problem

Let G, H, and S = {(g1, e1), . . . , (gs, es)} ⊆ G × H be parameters of a GHI
problem, and let d be the order of H. Let T = {(x1, z1), . . . , (xt, zt)} ⊆ G ×H
be a set of t inputs of the GHID problem. We assume that we have a prover
who wants to convince a verifier that for at least one k the answer to the GHID
problem with (xk, zk) is negative. Let ` be an integer. He performs the following
interaction with a verifier.

coGHIproof`(S, T )
Parameters: G, H, d
Input: `, S = {(g1, e1), . . . , (gs, es)}, T = {(x1, z1), . . . , (xt, zt)}
1: The verifier picks ri,k ∈ G, ai,j,k ∈ Zd, and λi ∈ Z∗p for i =

1, . . . , `, j = 1, . . . , s, k = 1, . . . , t, where p is the smallest prime
dividing d. He computes ui,k := dri,k +

∑s
j=1 ai,j,kgj + λixk and

wi,k :=
∑s

j=1 ai,j,kej + λizk. Set u := (u1,1, . . . , u`,t) and w :=
(w1,1, . . . , w`,t). He sends u and w to the prover.

2: The prover computes vi,k := f(ui,k) for i = 1, . . . , `, k = 1, . . . , t.
Since wi,k − vi,k = λi(zk − yk), he should be able to find every λi

if the verifier is honest since wi,k 6= vi,k for all i and at least one k.
Otherwise, he sets λi to a random value. He then sends a commitment
to λ = (λ1, . . . , λ`) to the verifier.

3: The verifier sends all ri,k’s and ai,j,k’s to the prover.
4: The prover checks that u and w were correctly computed. He then

opens the commitment to λ.
5: The verifier checks that the prover could find the right λ.

This protocol is inspired from denial protocol of Gennaro et al. [15]. We can also
transform it into a 2-move protocol.

We notice that λi was chosen such that it can be uniquely retrieved for every
nonzero values of Zd that can be taken by the elements zk − yk’s. Namely, this
is done by the following result.

Lemma 14. Let H be an Abelian group of order d, and a, b ∈ H such that b 6= 0.
Let λ be in {1, . . . , p− 1}, where p is the smallest prime dividing d. Then, if the
equation a = λb has a solution in λ, then this one is unique.

9



3.3 Proof for the MGGD Problem

Inspired by [19], we propose here a proof that S1 = {g1, . . . , gs} H-generate G.
However, the signer needs expert knowledge about G since he has to be able to
solve the (d, S1)-MSR and d-Root problems. Let ` be an integer. He performs
the following protocol.

MGGDproof`(S1)
Parameters: G, H, d
Input: `, S1 = {g1, . . . , gs} ⊆ G
1: for i = 1 to ` do
2: The prover picks a δ1 ∈ G at random and sends a commitment to

δ1 to the verifier.
3: The verifier picks a δ2 ∈ G at random and sends δ2 to the prover.
4: The prover solves (d, S1)-MSR on δ1 + δ2 and d-Root and finds

r ∈ G, a1, . . . , as ∈ Zd such that δ1 + δ2 = dr +
∑s

j=1 ajgj . He
sends r, a1, . . . , as to the verifier and opens the commitment to δ1.

5: The verifier checks that δ1 + δ2 = dr +
∑s

j=1 ajgj really holds.
6: end for

We can prove as in Lemma 11 that if a honest verifier is convinced with proba-
bility greater than p−`, then S1 solves the d-MGGD problem.

Note that this can be transformed into a non-interactive proof following
standard techniques [14]. An efficient way consists of generating pseudorandom
δ1, . . . , δ` from the same seed then solving the (d, S1)-MSR and d-Root problems
on those elements.

4 Undeniable Signature

4.1 Description

We now describe our undeniable signature scheme.

Domain parameters. We let integers Lkey, Lsig, Icon, Iden be security pa-
rameters as well as “group types” for Xgroup and Ygroup. (The group types
should define what groups and which sizes to use in order to achieve security.)
An optional parameter Ival is used in Setup Variants 3 and 4 below.

Primitives. We use two deterministic random generators Gen1 and Gen2 which
produce elements of Xgroup and a commitment scheme.

Setup Variant 1. (signer without expert group knowledge)
The signer selects Abelian groups Xgroup and Ygroup of given types together
with a group homomorphism Hom : Xgroup −→ Ygroup. He computes the
order d of Ygroup. He then picks a random string seedK and computes the
Lkey first values (Xkey1, . . . ,XkeyLkey) from Gen1(seedK) and Ykeyj :=
Hom(Xkeyj), j = 1, . . . ,Lkey.
The main problem of Setup is that the choice for (Xkey1, . . . ,XkeyLkey) must
Ygroup-generate Xgroup in order to ensure non-repudiation of signatures. In
Variant 1, Lkey must be large enough so that it is impossible to maliciously
select a key which does not guaranty this condition.
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Setup Variant 2. (signer with a Registration Authority (RA))
We use here a RA whose role consists of making sure that a key was randomly
selected. (Note that, the RA does not check if the key is valid.)
1. The signer selects Abelian groups Xgroup and Ygroup of given type

together with a group homomorphism Hom : Xgroup −→ Ygroup. He
computes the order d of Ygroup. He submits his identity Id together
with Xgroup, Ygroup and d to RA.

2. RA first checks the identity of the signer and that he did not submit too
many registration attempts. He then picks a random string seedK that
is sent to the signer together with a signature C for

(Id,Xgroup,Ygroup, d, seedK).

3. The signer computes the Lkey first values (Xkey1, . . . ,XkeyLkey) from
Gen1(seedK) and Ykeyj := Hom(Xkeyj), j = 1, . . . ,Lkey.

Here the RA basically selects the random key so Lkey can be reduced.
Setup Variant 3. (signer with an expert group knowledge)

In this variant we assume that the signer can solve the MSR and Root
problems in Xgroup. It works exactly like in the Setup Variant 1, but the
signer can further run a MGGDproofIval in order to validate the public key
so that Lkey can be further reduced to the smallest possible one.

Setup Variant 4. (signer with an expert group knowledge, non-interactive)
This variant is the same as Variant 3 except that MGGDproof is transformed
into a non-interactive proof.

Public Key. KP = (Xgroup,Ygroup, d, seedK, (Ykey1, . . . ,YkeyLkey)) with an
optional (Id, C) for Variant 2, an optional Ival for Variants 3,4, and an
optional non-interactive proof for Variant 4. We say that KP is valid if
{Xkey1, . . . ,XkeyLkey} Ygroup-generate Xgroup.

Secret Key. KS = Hom.
Signature generation. The message M is used to generate Xsig1, . . . ,XsigLsig

from Gen2(M). The signer computes Ysigk = Hom(Xsigk) for k = 1, . . . ,Lsig.
The signature is (Ysig1, . . . ,YsigLsig). It consists of Lsig. log2 d bits.

Confirmation Protocol. Compute Xkey1, . . . ,XkeyLkey from the public key,
Xsig1, . . . ,XsigLsig from the message, run GHIproofIcon on the set

S = {(Xkeyj ,Ykeyj)|j = 1, . . . ,Lkey} ∪ {(Xsigk,Ysigk)|k = 1, . . . ,Lsig}.

Denial Protocol. Compute Xkey1, . . . ,XkeyLkey from the public key as well
as Xsig1, . . . ,XsigLsig from the message, run coGHIproofIden on the sets

S = {(Xkeyj ,Ykeyj)|j = 1, . . . ,Lkey}, T = {(Xsigk,Zsigk)|k = 1, . . . ,Lsig}

where (Zsig1, . . . ,ZsigLsig) is the alleged non-signature.

The undeniable signature scheme of Gennaro et al. [15] which is based on RSA
corresponds to a special case of our scheme, namely with Xgroup = Ygroup =
Z∗n, Lkey = Lsig = 1 and the classical RSA signing function as homomorphism

11



Hom. Another example with Lkey = Lsig = 1 is the undeniable signature of
Chaum [7]. He considered Xgroup = Ygroup = Z∗p for a prime p and the ho-
momorphism consisting in raising an element to the power of the private key.
In both examples the signature is quite large. The MOVA scheme [19] is an-
other example with Xgroup = Z∗n, Hom is a character of order d ∈ {2, 3, 4}, and
Ygroup is the subgroup of C∗ spanned by e

2iπ
d .

4.2 Security Analysis

Theorem 15 (Setup Variants 1,2). We consider the above undeniable signa-
ture. Given a prime q, we let Aq be the subgroup of Xgroup of all terms whose
orders are powers of q. Given q there is a unique kq and aq,1 ≤ . . . ≤ aq,kq

se-
quence such that Aq is isomorphic to Zqaq,1 ⊕ . . .⊕Zq

aq,kq . The probability Pgen

that {Xkey1, . . . ,XkeyLkey} Ygroup-generate Xgroup satisfies

Pgen ≥
∏

q∈Pd

(
1− kq

qLkey

)
,

where Pd is the set of all prime factors of gcd(#Xgroup, d).

As an application, if d is prime and if Xgroup is a product of k cyclic groups,
we have Pgen ≥ 1− k.d−Lkey.

Theorem 16. We consider the above undeniable signature scheme. Assuming
that the public key is valid, we have the following security results.

i. If the signer and the verifier are honest, the two protocols complete: a valid
signature will always be accepted by the confirmation protocol, and an invalid
signature will always be rejected by the denial protocol.

ii. Let S = {(Xkey1,Ykey1), . . . , (XkeyLkey,YkeyLkey)}. The scheme resists
against existential forgery attacks provided that Gen2 is a random oracle
and the S-GHI problem is intractable.

iii. The confirmation (resp. denial) protocol is sound: if the signer is able to pass
the protocol with probability q > p−Icon (resp. q > p−Iden), then the alleged
signature is valid (resp. invalid).

iv. The confirmation protocol is private when the commitment scheme is ex-
tractable: for any θ, ε > 0, from a prover which is able to convince a honest
verifier that a given signature is valid with probability q > (p−1 + θ)Icon, we
can extract within a complexity factor of Ω(θ−2 log(p/ε)) a group homomor-
phism which solves the GHI problem with success probability 1− ε.

v. The signatures are invisible: for any θ, ε > 0, from a distinguisher of a valid
signature from a random one with advantage θ > 0, we can extract within
a complexity factor of Ω(θ−2 log(1/ε)) a GHID problem solver with success
probability 1− ε.

vi. The confirmation (resp. denial) protocol is perfectly black-box zero-knowledge
when the commitment scheme is perfectly hiding: we can build a simulator
for the protocol without the secret key for any verifier.
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In short, if we take Xgroup = Z∗n where n is a product of two prime numbers,
and Lsig = Icon = Iden = sonline/ log2 p, we cannot contradict the confirmation
or denial protocols but with a probability at most 2−sonline , and signatures are
invisible provided that generators are random oracles and that the interpolation
problem is hard. For Variant 2, we can take Lkey = sonline/ log2 p and this
generates invalid keys with probability less than 21−sonline . For Variant 1, we can
take Lkey = soffline/ log2 p so that the signer cannot create invalid keys within
a complexity less than 2sonline . For Variants 3,4, Lkey can be as low as possible.
We can take Ival = sonline/ log2 p for Variant 3 (so that invalid keys are accepted
with probability less than 2−sonline), and Ival = soffline/ log2 p for Variant 4 so
that the signer cannot create invalid keys within a complexity less than 2sonline .
We suggest soffline = 80 and sonline = 20.

5 Example and Further Discussions

5.1 Setting Proposal

We consider Example 9 with a small prime d e.g. d = 220 +7. We take Xgroup =
Z∗n, Ygroup = Zd, Lkey = Lsig = Icon = Iden = 1 and we consider Variant 3
and 4 of the Setup protocol. If Xkey ∈ Xgroup is not a dth power residue
then it Ygroup-generates Xgroup. For any Ykey ∈ Zd there is a unique group
homomorphism Hom such that Hom(Xkey) = Ykey. With this example we can
sign with a single element of Zd and a public key (n, d, seedK,Ykey).

Note that the group homomorphism computation requires raising to the
power r in Z∗p and computing the discrete logarithm in a cyclic group of about
220 elements. This can be precomputed in a table of 2.5 MB as detailed below.

We first precompute a (large) table of all (Xsigi, i) with Xsigi = Xkeyir

(mod p) for i = 0, 1, . . . , d− 1. Note that i can be encoded into 20 bits. Next we
insert all (Xsigi, i) pairs in a hash table of 220 entries keyed by Xsigi: put i at
position h(Xsigi) unless there is a collision. Resolving collisions can be done by
standard techniques, for instance see [10] Chapter 12, but note that resolving
collisions is not necessary: if Xsigi is not in the table, we can look for the smallest
j such that Xsigi+j is in the table.

Time/memory tradeoffs can also be considered. Remark also that such a
tradeoff should not require more than the complexity of the Pollard’s rho algo-
rithm for the computation of the discrete logarithm in our example, i.e. approx-
imately 3000 multiplications.

Depending on the application, the signature size of 20 bits may be considered
as too small. Of course, we can easily enlarge it e.g. to 48 bits. Our point is that
signature size versus security is fully scalable here.

The signature generation requires 1 homomorphism i.e. about one exponen-
tiation in Z∗p. (Note that this is twice as fast as a 1024-bit RSA signature com-
putation with Chinese remainders.) The complexity of the confirmation protocol
is about 35 multiplications in Z∗n for the verifier (which can be compared to 17
multiplications in Z∗n for RSA if we take e = 216 + 1) and 1 homomorphism for
the prover. The denial protocol requires almost the same complexity.
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Complexities of this setting with all setup variants as well as those of the
MOVA scheme with d = 2 and a 20-bit signature length are detailed in Table 1.
The main advantage of using the above setting instead of MOVA is that the for-
mer strongly decreases the number of multiplications in Z∗n for the confirmation.

Setup d Lsig, Icon, Iden Lkey Ival Signature cost Confirmation cost

1 2 20 80 20 Leg. symb. 20 Leg. symb., 730 mult.
2 2 20 20 20 Leg. symb. 20 Leg. symb., 280 mult.
3 2 20 2 20 20 Leg. symb. 20 Leg. symb., 145 mult.
4 2 20 2 80 20 Leg. symb. 20 Leg. symb., 145 mult.

1 220 + 7 1 4 1 Hom 1 Hom, 65 mult.
2 220 + 7 1 1 1 Hom 1 Hom, 35 mult.
3 220 + 7 1 1 1 1 Hom 1 Hom, 35 mult.
4 220 + 7 1 1 4 1 Hom 1 Hom, 35 mult.

Table 1. Implementation Examples.

5.2 On the MOVA Scheme

We point out here that our scheme generalizes the MOVA scheme [19] and im-
proves the efficiency of the denial protocol of MOVA. An additional contribution
to MOVA is also the improvement of some bounds related to the probability of a
function approximating Hom from which we can compute Hom in a polynomial
time. Our new bound with 1/p allows to formally prove the conjectured security
level of MOVA.

5.3 Batch Verification and Selective Convertibility

We point out that our scheme allows a batch verification of signatures. Indeed,
the confirmation protocol can be easily adapted in order to confirm several sig-
natures at the same time by putting all (Xsigk,Ysigk) in a single set S.

Note that the signer with expert group knowledge can selectively convert an
undeniable signature into a classical one by solving the MSR and Root problems
on all Xsigk. The conversion consists of revealing the solution to those problems.

6 Conclusion

We have exposed an undeniable signature based on a generic group homomor-
phism interpolation and we have also analyzed the security in the random oracle
model. The principal advantage is the size of the signature that can be chosen
arbitrarily short depending on the required security level. Confirmation and de-
nial can be run in a 2-move protocol. We can perform batch verification and
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have selective convertibility. From this general setting we have also proposed a
practical example with 3-byte signatures and a complexity cost which is similar
to RSA. We hope that this example will be completed by some various additional
settings since group homomorphisms are common objects in cryptography.

As future work, we also aim at extending our techniques to other crypto-
graphic algorithms such as the designated confirmer signatures [8].

Acknowledgments. We wish to thank Anna Lysyanskaya and Wenbo Mao for
helpful discussions and comments.
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A Technical proofs

Proof of Lemma 2. 1 ⇔ 2 ⇔ 3. Straightforward.
3 ⇒ 4. Assume that there exists a common prime factor p of #(G/G′) and d.
Then, from the structure of Abelian groups G/G′ and H we know that each of
these two groups possesses one cyclic subgroup U and V respectively of order
p. So, we define a non trivial homomorphism that is the composition of the
isomorphism between the two cyclic subgroups and with the reduction modulo
U . This contradicts 3.
4 ⇒ 5. If x ∈ G, then d must be invertible modulo the order k of x mod G′ by
4. Let m such that m ·d ≡ 1 (mod k). We have m ·d ·x ≡ x (mod G′). Hence,
x− d(m · x) ∈ G′ and therefore x ∈ G′ + dG.
5 ⇒ 2. If ϕ ∈ Hom(G, H) is such that ϕ|G′ = 0 and x ∈ G, we can write
x = a1x1 + · · · + asxs + dr. Thus, ϕ(x) = dϕ(r) = 0. This holds for all x ∈ G,
i.e., ϕ = 0. ut

Proof of Lemma 10. Let n be the order of G. Let h : G × Zs
nd → G be a

function defined by h(r, a1, . . . , as) = dr + a1x1 + . . . + asxs. Obviously, h is
an homomorphism. It is onto G due to the property 5 of Lemma 2. Hence,
it is balanced onto G. Let ϕ : G × Zs

nd → G × Zs
d be a function defined by

ϕ(r, a1, . . . , as) → (r + q1x1 + · · · + qsxs, a1 mod d, . . . , as mod d), where ai −
(ai mod d) = dqi. We have g ◦ϕ = h. Obviously, ϕ is balanced onto G×Zs

d since
ϕ−1(r, a1, . . . , as) = {(r− q1x1− . . .− qsxs, a1 +dq1, . . . , as +dqs) | (q1, . . . , qs) ∈
Zs

n}. If #g−1(x) = m, we have mns = #ϕ−1
(
g−1(x)

)
= #h−1(x) = (dn)s.

Hence, m = ds does not depend on x, so g is balanced. ut

Proof of Theorem 15 (sketch). The decomposition of Xgroup comes from classical
results on the structure of Abelian groups. We observe that we can handle each
Aq independently because we can see that two elements generating two different
Aq’s generate the direct sum of these two groups, since the two respective group
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orders are coprime. We consider Bq := Aq/dAq and study the probability that
elements generate this group. If gcd(d, q) = 1, then Bq is trivial. So, we focus
only on the q’s that divide d and denote eq the largest integer such that qeq |d.
We can also deduce that the structure of Bq satisfies

Bq ' Zqaq,1 ⊕ . . .⊕ Zqaq,r ⊕ Zqeq ⊕ . . .Zqeq ,

where r is the largest integer such that aq,r < eq. The probability that s elements
does not generate Bq can be approximated by the probability that these elements
stay in one of the largest non trivial subgroups of Bq, i.e. those of order #Bq/q.
The number of such subgroups is equal to kq. Thus, this probability is greater
or equal than 1 − kq

qs . Since these events are independent for the different Bq’s,
the final probability is obtained by the multiplication of these probabilities. ut

Proof of Theorem 16 (sketch). i. The assertion i is straightforward.
ii. First, we show that an attacker A having access to a signing oracle can be
simulated by an attacker without this access. Indeed, when A calls the signing
oracle on a message M , the signing oracle will first produce a sequence of Lsig
values Xsig1, . . . ,XsigLsig ∈ Xgroup and then computes Ysigi := Hom(Xsigi) for
i = 1, . . . ,Lsig. From the point of view of A, this is completely equivalent to
dispose of a random source generating pairs of the form (x, Hom(x)) since Gen2

is modelized as a random oracle. Assuming that S1 Ygroup-generate Xgroup, we
see that this source can be simulated by picking some random r ∈ Xgroup, ai’s ∈
Zd, computing x := dr+a1Xkey1+· · ·+aLkeyXkeyLkey and Hom(x) = a1Ykey1+
· · ·+aLkeyYkeyLkey using Lemma 10. We denote now x, the challenged element of
the GHI problem. We use our attackerA in order to compute the Hom(Xsigi)’s as
follows. We simulate Gen2 by computing u := dr + x +

∑Lkey
j=1 ajXkeyj for some

random r ∈ Xgroup, aj ∈ Zd. This is indistinguishable from some uniformly
picked element in Xgroup. By standard proofs we show that forged signatures
are necessarily one of the Gen2 queries, so we can deduce Hom(x) from Hom(u).
iii. For the confirmation, this directly comes from Theorem 13 property iii. For
the denial, a cheating prover willing deny a valid signature has to find the value
of λi at each round of the protocol. Since Hom(ui,k) = wi,k, the prover does not
learn additional information with wi,k and has to find λi from ui,k uniquely. He
cannot find the λi since another distribution of the values ui,k with another λi is
indistinguishable from the first one. Assuming that the commitment scheme is
perfectly binding the cheating prover cannot do better than answering a random
λi.
iv. This directly comes from Theorem 13 property iv.
v. This works like in Lemma 12. We count how many times (x′, y′) is accepted
after having picked x′ = x + dr + a1Xkey1 + · · · + aLkeyXkeyLkey and y′ =
y + a1Ykey1 + · · ·+ aLkeyYkeyLkey. We use n = θ−2 log(1/ε) iterations.
vi. For the confirmation, this comes from property ii in Theorem 13. For the
denial, this is done as in [15]. ut
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