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This document provides an erratum of the article “Generic Homomorphic
Undeniable Signatures” which was published in the proceedings of Asiacrypt ’04,
LNCS 3329, pp. 354-371, Springer, 2004. At page 360, the last approximation
in the following expression
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2 . In the above approximation, we have used the

false approximation Φ(−x) ≈ 1√
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instead of
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which is correct when x is large. Note also that ϕ(x)/x ≤ ϕ(x) when x is large.
Hence, if we set n = 8θ−2(p−1 + θ) log(p/ε) we get
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for n large enough. The rest of the paper remains correct except that the com-
plexity becomes 8θ−2 log(p/ε) oracle calls.

Below we rewrite Lemma 5 and its proof sketch in a correct form.

Lemma 5. Given two finite Abelian groups G and H, and a set of s points
S = {(xi, yi) | i = 1, . . . , s}, we assume that x1, . . . , xs H-generate G. We
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assume that we are given the order d of H whose smallest prime factor is p and
that we can sample elements in G with a uniform distribution. We assume that
we have an oracle function f : G −→ H such that

Pr
(r,a1,...,as)∈U G×Zs

d

[f(dr + a1x1 + · · ·+ asxs) = a1y1 + · · ·+ asys] =
1
p

+ θ

with θ > 0. Let ε > 0 be arbitrarily small. There exists a group homomorphism
which interpolates S and which is computable within 8θ−2 log(p/ε) oracle calls
with an error probability less or equal to ε.

Proof (sketch). Due to Lemma 4, the homomorphism g exists and we have
Prx∈U G[f(x) = g(x)] = p−1 + θ. We use the same techniques which are used
in linear cryptanalysis and consider the following algorithm.

Input: x ∈ G
1: repeat
2: pick r ∈ G, a1, . . . , as ∈ Zd at random
3: y = f(x + dr + a1x1 + · · ·+ asxs)− a1y1 − · · · − asys

4: c = 0
5: for i = 1 to n do
6: pick r ∈ G, a1, . . . , as, a ∈ Zd at random
7: if f(dr + a1x1 + · · ·+ asxs + ax) = a1y1 + · · ·+ asys + ay (T)

then
8: c = c + 1
9: end if

10: end for
11: until c > τn
Output: y

We choose n = 8θ−2(p−1 + θ) log(p/ε) and τ = p−1 + 1
2θ and we estimate the

error probability of the acceptance test. We consider two types of error:

ε1 = Pr
x∈U G

[c ≤ τn | y = g(x)] ε2 = Pr
x∈U G

[c > τn | y 6= g(x)]

We will now estimate these two values and show that they are negligible. If
y 6= g(x), then the test (T) works with probability t2 ≤ 1/p due to Lemma 4.
We also notice that if y = g(x), the probability that the test works is 1

p + θ.
Hence, using the central limit theorem we obtain
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when n is large enough and where Φ denotes the distribution function of the
standard normal distribution. By looking at the logarithmic derivative of the
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function f(t) = (τ − t)/(
√

t(1− t)) and noticing that this one is negative on the
interval [0, τ ] we deduce that
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where the last approximation holds when n is large enough (ε small). Since n is
large, we also have
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Now, we substitute the expression of n in the above inequality and we obtain
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Since p+p2θ
p−1 ≥ 1 and ε

p < 1 when ε is small, we finally get ε2 ≤ ε/(p
√

2π) ≤ ρε/2
where ρ = p−1 + θ. In a similar way, we can show that ε1 ≤ ε/2. It remains
to compute the complexity and the error probability of the algorithm. At first,
we observe that the probability α that c ≤ τn in the algorithm is equal to
ρε1+(1−ρ)(1−ε2). From the estimate of ε1, ε2, we see that α ≈ 1−ρ. Moreover,
the number of iterations is equal to

∑∞
i=1 iαi−1(1−α) = 1/(1−α) ≈ 1/ρ. Hence,

the complexity is n/ρ = 8(log(1/ε) + log(p))/(ρ− 1
p )2. The probability of error

is given by
∑∞

i=1 αi−1(1− ρ)ε2 ≈ ε2(1− ρ)/ρ ≤ ε2/ρ ≤ ε/2. ut
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