
Advances in Alternative Non-adjacent Form
Representations

Gildas Avoine�, Jean Monnerat��, and Thomas Peyrin

EPFL
Lausanne, Switzerland

Abstract. From several decades, non-adjacent form (NAF) representa-
tions for integers have been extensively studied as an alternative to the
usual binary number system where digits are in {0, 1}. In cryptography,
the non-adjacent digit set (NADS) {−1, 0, 1} is used for optimization of
arithmetic operations in elliptic curves. At SAC 2003, Muir and Stinson
published new results on alternative digit sets: they proposed infinite
families of integers x such that {0, 1, x} is a NADS as well as infinite
families of integers x such that {0, 1, x} is not a NADS, so called a NON-
NADS. Muir and Stinson also provided an algorithm that determines
whether x leads to a NADS by checking if every integer n ∈ [0, �−x

3 �]
has a {0, 1, x}-NAF. In this paper, we extend these results by provid-
ing generators of NON-NADS infinite families. Furthermore, we reduce
the search bound from �−x

3 � to �−x
12 �. We introduce the notion of worst

NON-NADS and give the complete characterization of such sets. Beyond
the theoretical results, our contribution also aims at exploring some al-
gorithmic aspects. We supply a much more efficient algorithm than those
proposed by Muir and Stinson, which takes only 343 seconds to compute
all x’s from 0 to −107 such that {0, 1, x} is a NADS.

1 Introduction

It is well known that every positive integer n can be represented as a finite
sum of the form

∑n
i=0 ai2i, denoted by (. . . a3a2a1a0)2, where the digits ai’s are

picked in the digit set D = {0, 1}. Using the digit set {0, 1} is a common way
to represent integers but for some efficiency purposes some alternative digit sets
have been proposed during the last decades.

Ternary representations (with radix 3) are mainly due to Lalanne [10] but
took off in 1951 when Booth [1] proposed a fast technique to compute the repre-
sentation of the product of two integers using the {−1, 0, 1} radix 2 representa-
tion. In 1960, Reitwiesner [17] proved that every integer has a canonical {−1, 0, 1}

� Supported in part by the National Competence Center in Research on Mobile In-
formation and Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322.

�� Supported in part by a grant of the Swiss National Science Foundation, 200021-
101453/1.

A. Canteaut and K. Viswanathan (Eds.): INDOCRYPT 2004, LNCS 3348, pp. 260–274, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Advances in Alternative Non-adjacent Form Representations 261

radix 2 representation with a minimal number of nonzero digits. This representa-
tion called non-adjacent form (NAF) is obtained if for any two adjacent digits at
least one is zero. Later, in 1989, Jedwab and Mitchell [6] presented an interesting
cryptographic application of such representations showing that using the digit set
{−1, 0, 1} can reduce the number of multiplications in the square-and-multiply
algorithm for exponentiation. In elliptic curves, where inversion can be done for
(almost) free, exponentiations are much more efficient with such representations.
Using this property, Morain and Olivos [14] proposed in 1991 an algorithm speed-
ing up operations over elliptic curves using the {−1, 0, 1} digit set. More recently
Joye and Tymen [7] proposed a compact encoding of non-adjacent forms applied
to elliptic curves, in particular to the Koblitz curves. During the last decade, a
certain amount of work has been devoted to non-adjacent form representations
such as [2, 3, 4, 5, 8, 9, 12, 13, 18, 19].

In our case, we focus on ternary radix 2 representations using the digit set
{0, 1, x} where x is a negative integer. Determining which sets {0, 1, x} provide
non-adjacent forms for every positive integer is still an open problem. Such sets
are called non-adjacent digit sets (NADS). Muir and Stinson [15, 16] gave new
results at SAC 2003, proposing some properties that x must verify in order to
lead to a NADS and they gave some infinite families of x such that {0, 1, x} is or
is not a NADS. In the latter case, we say that {0, 1, x} is a NON-NADS. They
also provided an algorithm that determines whether x is a NADS by checking
whether every integer n ∈ [0, �−x

3 �] has a {0, 1, x}-NAF.
We extend in this paper their results by proposing generators that produce

infinite families of NON-NADS as much as we wish and we give a way to deter-
mine such generators. We reduce also the search bound from �−x

3 � to �−x
12 �. We

introduce the notion of worst NON-NADS and give a complete characterization
of these numbers. Our contribution aims also at exploring algorithmic aspects
related to NADS. So, we propose some improvements of the Muir and Stinson’s
algorithms [15, 16] that comes from our new theoretical results and we propose
a new approach to compute NADS. The first algorithm proposed in [15] took
about one day in order to find all x’s from −1 to −107 such that {0, 1, x} is a
NADS. While an improved version also due to Muir and Stinson [16] takes about
20 minutes, our own algorithm takes only 343 seconds.

2 Preliminaries and Previous Works

2.1 Definitions and Notation

Every positive integer n can be represented as a finite sum of the form
∑n

i=0 ai2i,
denoted by (. . . a3a2a1a0)2. Here, the digits ai’s are in the digit set D = {0, 1}.

Definition 1. The Hamming weight of a non-negative integer n, denoted by
w(n), is the number of ones in the usual {0, 1}-radix 2 representation of n.

262 G. Avoine, J. Monnerat, and T. Peyrin

Definition 2. The length of a radix 2 representation (. . . a2a1a0)2 is the largest
integer � such that a�−1 �= 0 but ai = 0 for all i ≥ �.

The set of all strings of digits from D is denoted by D∗ and contains the
empty string ε. Every D-radix 2 representation matches a string in D∗ and every
string in D∗ matches a D-radix 2 representation. For α, β ∈ D∗, we denote their
concatenation by α‖β. The terminology for representations can be applied to
strings. We note α̂ the string formed by deleting the leading zeros from α. For a
given digit set D and an integer n, we define the map RD(n) such that RD(n) = α̂
where α ∈ D∗ is a D-NAF for n, if one exists, and RD(n) = ⊥ otherwise. Here ⊥
represents the symbol not in D. We are interested in determining which integers
have D-NAF’s, so we define the set NAF(D) := {n ∈ Z : RD(n) �= ⊥}.

Definition 3. D is a nonadjacent digit set if Z
+ ⊆ NAF(D).

2.2 Characterization of NADS

First of all, we give a few theorems, whose proofs can be found in [15], giving
necessary conditions for {0, 1, x} to be a NADS or a NON-NADS.

Theorem 1. Let D = {0, 1, x}. If there exists n ∈ NAF(D) with n ≡ 3 (mod 4),
then x ≡ 3 (mod 4).

Theorem 2. The only NADS of the form {0, 1, x} with x > 0 is {0, 1, 3}.
Theorem 3. If x ≡ 3 (mod 4), then any integer has at most one finite length
{0, 1, x}-NAF form with no leading zeros.

From Theorems 1 to 3 we see that a {0, 1, x}-NAF is unique and that x must
be negative and congruent to 3 modulo 4 for {0, 1, x} to be a NADS (except for
D = {0, 1, 3}). Hence, we only consider NADS such that x < 0. The following
lemmas lead to an algorithm that determines whether an integer n ∈ Z

+ has a
{0, 1, x}-NAF.

Lemma 1. If n ≡ 0 (mod 4) then n ∈ NAF(D) if and only if n/4 ∈ NAF(D).
Further, if n ∈ NAF(D) then RD(n) = RD(n

4)‖00.

Lemma 2. If n ≡ 1 (mod 4) then n ∈ NAF(D) if and only if (n − 1)/4 ∈
NAF(D). Further, if n ∈ NAF(D) then RD(n) = RD(n−1

4)‖01.

Lemma 3. If n ≡ 2 (mod 4) then n ∈ NAF(D) if and only if n/2 ∈ NAF(D).
Further, if n ∈ NAF(D) then RD(n) = RD(n

2)‖0.

Lemma 4. If n ≡ 3 (mod 4) then n ∈ NAF(D) if and only if (n − x)/4 ∈
NAF(D). Further, if n ∈ NAF(D) then RD(n) = RD(n−x

4)‖0x.

Advances in Alternative Non-adjacent Form Representations 263

We define now the function fD : N → N as follows: fD(n) = n
4 if n ≡ 0

(mod 4), fD(n) = n−1
4 if n ≡ 1 (mod 4), fD(n) = n

2 if n ≡ 2 (mod 4), fD(n) =
n−x

4 if n ≡ 3 (mod 4). For the sake of simplicity, we abuse the notation by
denoting f0(n) = n

4 , f1(n) = n−1
4 , f2(n) = n

2 , and f3(n) = n−x
4 . Note that

∀n ∈ [0, x
3], f0(n) < n, f1(n) < n, f2(n) < n, and f3(n) > n. We denote f i

the i-fold composition of the function f . We introduce now the graph Gn of an
integer n for a given digit set {0, 1, x}, whose vertices are the iterations of the
function fD on n:

n −→ fD(n) −→ f2
D(n) −→ f3

D(n) −→ . . .

where either ∃k ≥ 0 such that fk
D(n) = 0 or ∃k1, k2, 0 ≤ k1 ≤ k2 such that

fk1
D (n) = fk2

D (n). In other words, either Gn is a path terminating at 0, or Gn

contains a directed cycle of integers in the interval {0, 1, 2, . . . , �−x
3 �} as proved

hereafter. The length of the cycle is defined as k2 − k1. Every vertex of Gn is
positive. Suppose that f i

D(n) < −x
3 , we prove that f i+1

D (n) < −x
3 . If f i

D(n) ≡
0, 1, 2 (mod 4) we have f i+1

D (n) ≤ f i
D(n) < −x

3 . If f i
D(n) ≡ 3 (mod 4) then

f i
D(n) <

−x

3
=⇒ f i

D(n) − x

4
<

−x
3 − x

4

=⇒ f i+1
D (n) <

−x − 3x

12
=

−x

3
.

By extension, we define the graph G(x) of an integer x as G(x) :=
⋃� −x

3 �
n=0 Gn.

Note that if {0, 1, x} is a NADS, then G(x) is a directed tree whose root is
0. We define now the function gD : N → D∗ such that: gD(n) = “00” if n ≡ 0
(mod 4), gD(n) = “01” if n ≡ 1 (mod 4), gD(n)= “0”if n ≡ 2 (mod 4) , gD(n) =
“0x” if n ≡ 3 (mod 4). From Lemmas 1 to 4 and the definitions of fD and gD,
Muir and Stinson proposed Lemma 5 that yields Algorithm 1.

Algorithm 1: NAF(n,x)

α← ε
while n > −x

3

do
{

α← gD(n)‖α
n← fD(n)

S ← ∅

while n �= 0

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if n ∈ S
then return ⊥

S ← S ∪ {n}
α← gD(n)‖α
n← fD(n)

return α̂

Algorithm 2: Is-NADS?(x)

N ← 3

while N ≤ −x
3

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n← N
S ← ∅

while n �= 0

do

⎧⎪⎪⎨
⎪⎪⎩

if n ∈ S
then return false

S ← S ∪ {n}
n← fD (n)

N ← N + 4

return true

264 G. Avoine, J. Monnerat, and T. Peyrin

Lemma 5. For any n ∈ N, n ∈ NAF(D) if and only if fD(n) ∈ NAF(D).
Further, if n ∈ NAF(D) then RD(n) = RD(fD(n))‖gD(n).

The time complexity of the NAF algorithm in the worst case is straightfor-
ward: the complexity of the first loop is O(log n) while the complexity of the
second one is O(|x|). The complexity of the algorithm, in the worst case, is
therefore O(log n + |x|). We expose now Theorem 4 that provides algorithm Is-
NADS? (See Algorithm 2) determining whether or not a given x < 0 leads to a
NADS.

Theorem 4. Suppose x is a negative integer and x ≡ 3 (mod 4). If every ele-
ment in the set {n ∈ Z

+ : n ≤ �−x
3 �, n ≡ 3 (mod 4)} has a {0, 1, x}-NAF, then

{0, 1, x} is a NADS.

The algorithm Is-NADS? requires O(|x|) tests (one test is roughly equivalent
to the second loop of the algorithm NAF), therefore the complexity of Is-NADS?
is O(|x|2). Finally, Muir and Stinson [15] give some characterizations of infinite
families of NADS and NON-NADS. Among them, we will use the two following
theorems.

Theorem 5. Let x be a negative integer with x ≡ 3 (mod 4). If (2s − 1) | x for
any s ≥ 2, then {0, 1, x} is not a NADS.

Theorem 6. Let x be a negative integer with x ≡ 3 (mod 4). If (4 · mi − 1) <
−x < (3 · 2i) for some i ≥ 0, then {0, 1, x} is not a NADS, where

mi :=

{
2 · 2i−1

3 for i even
2i+1−1

3 for i odd.

3 New Theoretical Results

3.1 Improvement on the Search Domain

By Theorem 4, we know that determining whether {0, 1, x} is a NADS can
be performed by checking whether every element of the set {n ∈ Z

+ : n ≤
�−x

3 �, n ≡ 3 (mod 4)} has a {0, 1, x}-NAF. Here, we prove that the search
bound �−x

3 � can be improved when 3 or/and 7 do not divide x. So, Theorem 7
reduces the bound to �−x

6 � and Theorem 8 goes further reducing the search
domain to]0, �−x

12 �] ∪ [�−x
7 �, �−x

6 �].

Theorem 7. Let x be a negative integer such that 3 � x and x ≡ 3 (mod 4). If
every element in the set {n ∈ Z

+ : n ≤ �−x
6 �, n ≡ 3 (mod 4)} has a {0, 1, x}-

NAF, then {0, 1, x} is a NADS.

Advances in Alternative Non-adjacent Form Representations 265

Proof. Let n ≡ 3 (mod 4) be a positive integer such that n ≤ �−x
3 �. Since 3 � x,

n < −x
3 . We have to show that Gn must contain at least one vertex which is

less than −x
6 . In other words, this corresponds to show the existence of j ∈ N

satisfying f j
D(n) < −x

6 . From definition of fD, we also remark that if f i
D(n) < −x

3
is congruent to 0, 1, 2 modulo 4, then f i+1

D (n) < −x
6 . So, it remains to show that

f i
D(n) cannot be congruent to 3 modulo 4 for all i ∈ N. From Section 2.2, we

know that f i
D(n) < −x

3 ⇒ f i+1
D (n) < −x

3 for i ∈ N and that fD is strictly
increasing on the upper bounded set {n ∈ Z

+ : n ≤ −x
3 , n ≡ 3 (mod 4)}.

Hence, f i
D(n) cannot be congruent to 3 modulo 4 for all i ∈ N. ��

We give here a further improvement on the search domain.

Theorem 8. Let x be a negative integer such that 3 � x, 7 � x and x ≡ 3
(mod 4). If every element in the set {n ∈ Z

+ : n ≤ �−x
12 �, n ≡ 3 (mod 4)} ⋃{n ∈

Z
+ : �−x

7 � ≤ n ≤ �−x
6 �, n ≡ 3 (mod 4)} has a {0, 1, x}-NAF, then {0, 1, x} is a

NADS.

Proof. Let n be a positive integer such that n ≡ 3 (mod 4) and �−x
12 � ≤ n ≤

�−x
7 �. We will show that Gn contains at least a vertex that lies in the interval

[−x
7 , −x

6] or that is less than −x
12 . First, we notice that if an element of Gn is

congruent to 0 or 1 modulo 4, then this one will be sent to an integer less than
−x
12 since this element cannot be greater than or equal −x

3 . So, it remains to
consider the n’s for which Gn contains only vertices congruent to 2 or 3 mod-
ulo 4. Given that f2 ◦ f2 = f0, such a n is transformed by iterations of the
form

f2 ◦ f ik
3 ◦ f2 ◦ f

ik−1
3 ◦ · · · f2 ◦ f i1

3 , (1)

for some integer k ≥ 1 and where i1, . . . , ik are positive integers. We set
F := f2 ◦ f3. We see that F (n) = n−x

8 and that F (n) > n ⇔ n < −x
7 . From the

properties of the function f3, we can conclude that f2 ◦ f �
3(n) ≥ F (n) for � ∈ N

and n ≤ −x
3 . Hence, the value of some iterations of the form (1) applied to n is

greater or equal to F k(n). We finally deduce that there exists a positive integer
k such that the resulting integer n′ of the iteration (1) applied on n is greater
than −x

7 , since the intermediate value increases after each iteration of a function
of the form f2 ◦ f �

3 and since 7 � x. Moreover, n′ is less than −x
6 since every

values of Gn are less than −x
3 and that the last operation of (1) is a division

by 2.
��

Conjecture 1. Let x be a negative integer such that 3 � x, 7 � x and x ≡ 3
(mod 4). If every element in the set {n ∈ Z

+ : n ≤ �−x
12 �, n ≡ 3 (mod 4)} has

a {0, 1, x}-NAF, then {0, 1, x} is a NADS.

The new results presented in this section are particularly important because
they allow to reduce significantly the running time of Algorithm 2, as we will
see in Section 4.

266 G. Avoine, J. Monnerat, and T. Peyrin

3.2 Generators of Infinite Families of NON-NADS

In this section, we present a way to generate as many NON-NADS families as
we want. From a theoretical point of view, this method allows to find all NON-
NADS. In practice, it will be used as a trade-off in our algorithm Find-NADS
(See Section 4) that computes every x such that {0, 1, x} is a NADS.

The idea of our method comes from the fact that n ∈ NAF(D) if and only if
Gn does not contain any directed cycle. So, the existence of an integer n such
that Gn contains a directed cycle implies that D is not a NADS. Instead of
looking for a criteria on x for which there exists such a n, we consider a cycle
of a given form and deduce the values x for which n lies in this cycle. More
precisely, we choose the length t of the cycle as well as the sequence of the t
different functions fi for i ∈ {0, 1, 2, 3} that are applied successively on n. Once
the form of the cycle is chosen, we set for a positive integer n ≡ 3 (mod 4) the
equation

f t
D(n) = fit

◦ fit−1 ◦ . . . fi1(n) = n, (2)

where ik ∈ {0, 1, 2, 3} for k = 1, 2 . . . , t. We denote such a cycle of length t as
i1|i2| . . . |it. From (2), we obtain a relation of the form c1n = c2x for two given
c1, c2 ∈ Z. It remains to substitute n = 4k − 1 in this equation and solve it
with the conditions that k ∈ N and x is negative with x ≡ 3 (mod 4). Note that
i1 = 3.

2-Cycles. To illustrate our method, we show how we can concretely find every
cycle of length 2. Such a cycle is called a 2-cycle. First, we observe that we have
3 possible 2-cycles, namely 3|0, 3|1 and 3|2. They correspond to the equations
n−x
16 = n, n−x−4

16 = n and n−x
8 = n. The first equation provides x = −15n and

since n = 4k − 1, we then have x = −60k + 15 for k ∈ N. By setting k = 7,
we see that n = 27, x = −405 and f3(27) = 108 = 4 · 27. The second equation
provides x = −15n − 4 = −60k + 11. Similarly, we obtain x = −28k + 7 from
the third equation.

Theorem 9. If x = −60k + 15, x = −60k + 11 or x = −28k + 7 with k ∈ N,
then {0, 1, x} is a NON-NADS.

Some Cycles of Arbitrary Length. Here, we apply our method to find an
infinite number of NON-NADS families. As an illustration, we look for the x’s
whose graph G(x) contain a cycle of the form 3|3|3| . . . |3|0. Let t ≥ 2 be the
length of this cycle, we have to solve f0 ◦ f t−1

3 (n) = n. Let us first compute
f t−1
3 (n). We have

f t−1
3 (n) =

n − x
∑t−1

i=1 4i−1

4t−1 =
n − x(4t−1−1)

3

4t−1

and hence we get the equation

Advances in Alternative Non-adjacent Form Representations 267

f0 ◦ f t−1
3 (n) =

n − x(22t−2−1)
3

22t−1 = n.

This holds if and only if −x(22t−2 − 1)/3 = n(22t−1 − 1). From this, x has to
be a multiple of (22t−1 − 1) since gcd((22t−2 − 1)/3, 22t−1 − 1) = 1. Moreover,
x ≡ 3 (mod 4) implies that x is of the form x = −(4k − 1)(22t−1 − 1) for k ∈ N.
We can also see that n = (4k − 1)(4t−1 − 1)/3 is congruent to 3 modulo 4 and
that it is positive.

Theorem 10. Let t ≥ 2 and k > 0 be two integers and x = −(4k−1)(22t−1−1).
Then {0, 1, x} is a NON-NADS.

Note that for t = 2, this generates the x-family corresponding to that of
Theorem 9, namely −28k + 7. Obviously, if we consider cycles of another form
(instead of 3|3|3| . . . |3|0) we obtain some other generators.

3.3 Worst NON-NADS

We introduce in this section the notion of worst NON-NADS and give a complete
characterization of it.

Definition 4. Let x be a negative integer such that x ≡ 3 (mod 4). {0, 1, x} is
a worst NON-NADS if for all n ≤ −x

3 with n ≡ 3 (mod 4), n �∈ NAF ({0, 1, x}).

Theorem 11. Let x be a negative integer such that x ≡ 3 (mod 4). {0, 1, x} is
a worst NON-NADS if and only if there exists i ≥ 2 such that (4mi −1) < −x <
(3 · 2i), where

mi :=

⎧
⎨

⎩

2 · 2i−1
3 for i even

2i+1−1
3 for i odd

Proof. We first prove that if a given x is in an interval of the form]−3·2i, 1−4mi[
then {0, 1, x} is a worst NON-NADS. Next we prove that if {0, 1, x} is a worst
NON-NADS then it is in such an interval. Such an interval is called a gap. The
first part of the proof directly comes from the proof of Theorem 21 of [16].

We prove now the converse statement. In other words, we show that for each x
which is not in a gap, there exists a n such that n ∈ NAF({0, 1, x}). We introduce
the notion of pivot : xp is a pivot if there exists a i ≥ 2 s.t. xp = 3 − 2i+2.

We prove that, for all i ≥ 2, there is no worst NON-NADS in [3 − 2i+2,−3 ·
2i − 1]. Let xp be the pivot 3 − 2i+2; we have

f{0,1,xp}(3) =
3 − (3 − 2i+2)

4
= 2i,

implying that 3 ∈ NAF({0, 1, xp}). We have furthermore f{0,1,xp+4k}(3 + 4k) =
f{0,1,xp}(3) for all integers k ≥ 1. Therefore, xp + 4k is a worst NON-NADS if

268 G. Avoine, J. Monnerat, and T. Peyrin

3 + 4k <

⌊−xp − 4k

3

⌋

<
−xp − 4k

3
− 1.

Hence, we can compute that this inequality holds if and only if k < 2i−2 − 15
16 .

This implies that for every x ∈ [3−2i+2,−3 ·2i −1], we have found an n < �−x
3 �

that is a {0, 1, x}-NAF.
It remains to prove that the interval Ii := [1−4mi+1, 3−2i+2] does not contain

any integer x ≡ 3 (mod 4) that is a worst NON-NADS. To this end, we first show
that 3 is a {0, 1, x}-NAF for the smallest x ∈ Ii, i.e., for x = 3 − 4mi+1. Indeed,
for an odd i, it suffices to see that 3 = (101010 . . . 100x)2, where the sequence
01 is repeated (i + 1)/2 times. This is shown by the following computation

(1010 . . . 100x)2 = 3 − 4mi+1 +

i+1
2∑

j=1

22j+1 =
17 − 2i+4

3
+ 8 · 2i+1 − 1

3
= 3.

We deduce that for xk = 4k+x, where k ≥ 1, we also have (1010 . . . 100xk)2 =
3 + 4k. Moreover, we can also show that 3 + 4k < �−xk

3 � for all k ≤ 2i−2
3 and

that these xk’s correspond to all elements of the interval Ii that are congruent
to 3 modulo 4. This proves that the intervals Ii’s for the odd integers i’s do not
contain any worst NON-NADS. The case where i is even can be proved in the
same way by showing that 3 = (0101 . . . 010x)2, where the sequence 01 occurred
i
2 + 1 times. This concludes our proof. ��

4 Algorithmic Considerations

We use in this section the theoretical results presented in Section 3 combined
with some algorithmic methods in order to reduce the running time of the NADS
search. First of all, we recall the basic algorithm (Algorithm 3) proposed by Muir
and Stinson [15] and then we bring some improvements that greatly improve the
performances. So, Section 4.2 takes benefit of the theoretical results of Sec-
tion 3.1. Results presented in Section 3.2 are on their hand used in Section 4.3.
We then give the performances of our best algorithm in Section 4.4 and show
that when xmax = −107, the running time of our algorithm is only 343 seconds.

Algorithm 3: Find-NADS (xmax)

NADS← ∅

for i = −1 to i = xmax

do

⎧⎨
⎩

if (Is-NADS? i)
then NADS← NADS ∪ {i}

i← i− 4

return NADS

Advances in Alternative Non-adjacent Form Representations 269

4.1 Basic Algorithm

The algorithm Find-NADS (Algorithm 3) is the algorithm proposed by Muir and
Stinson. It finds NADS from −1 to xmax, iterating on this interval the algorithm
Is-NADS? presented in Section 2.2 which aims at determining whether or not a
given negative x leads to a NADS. Its performances are given in Section 4.4.

4.2 Intra-X and Inter-X Techniques

The intra-X technique consists of using memoization method during the execu-
tion of Is-NADS?. Memoization is an optimization technique whose basic idea
is to remember function calls. A table is maintained that maps lists of argu-
ment values to previously computed return values for those arguments. When a
function is called, its list of arguments is looked up in the table. If an entry is
found, then the previously computed value is returned directly. Otherwise, the
value is computed and then stored in the table for future use. Such a technique
is well-suited for Algorithm 2 since function fD is called many times with the
same argument.

The Inter-X technique is an extension of the Intra-X technique using memo-
ization during the execution of Find-NADS. Note however that the return value
of fD depends on both n and x. However, the result of fD(n) is independent of
x when n �≡ 3 (mod 4). The intuitive idea consists roughly in establishing short-
cuts between n and successive iterations fk

D(n) until reaching a value congruent
to 3 modulo 4. We give hereafter a formal approach, by introducing equivalence
classes representing such shortcuts. Let b be the function from N to N defined by
b(n) = fk

D(n) where k ≥ 0, fk
D(n) ≡ 3 (mod 4) or fk

D(n) = 0, and ∀k′ 0 ≤ k′ < k,
fk′

D (n) �≡ 3 (mod 4) and fk′
D (n) �= 0. We define the equivalence relation R such

that nRn′ ⇔ b(n) = b(n′). The equivalence class of n induced by R, denoted by
ṅ is therefore the set {n′ ∈ N | nRn′}. The smallest element of ṅ is called the
representative of the class. Any element of ṅ has a {0, 1, x}-NAF if and only if the
representative of ṅ has a {0, 1, x}-NAF. As illustration, we give on Fig. 1 some el-
ements of the class whose representative is 7. The equivalence classes of 0 and all

29

469 234 465 464 232 233 232 116468

28

117 116 58 113 112 56

7

14

Fig. 1. Class of equivalence whose representative is 7

270 G. Avoine, J. Monnerat, and T. Peyrin

n such that n ≡ 3 (mod 4) are therefore pre-computed and stored in a table. This
pre-computation is lightweight: for every n ≡ 3 (mod 4) in the interval [0, −x

3],
the inverse of the procedure fD is recursively applied until n > −x

3 . The algo-
rithm Classes given in the appendix is the pseudo-code of this pre-computation
stage. When this pre-computation is achieved, each cell of the table, indexed with
n, contains the representative of ṅ. So, algorithm Is-NADS? uses the function
fD(n) only when n ≡ 3 (mod 4) and looks up the value in the table otherwise.
Note that the table induced only a low complexity space, that is O(|x| log |x|).

4.3 Algorithm Based on Elimination of NON-NADS

We present in this section an algorithm, based on a new approach, that con-
sists of finding all the x leading to a NADS by process of elimination of all
NON-NADS. This algorithm, Elim-NON-NADS, relies on the theoretical results
presented in Section 3.2. The rough idea of this algorithm is to eliminate all
NON-NADS lower than a given bound xmax having a cycle of length t, where t
varies from 1 to �−xmax

3 �. Indeed, x is a NON-NADS if and only if ∃n ∈ N,∃t ≥
2 such that f t

D(n) = n. For instance, the cycle 3|0 yields the equation n−x
16 = 16

that is −x = 3n. By iterating t, we can obtain all the possible values of x that
reach a cycle by using a depth-first search in the the exploration tree of the
different ways to construct a cycle. Using results of Section 3.2, we obtain:

−x =
n · (k1 − 1) + k3

k2
with k1 ≥ 4, k2 ≥ 1, k3 ≥ 0, n ≥ 3.

We move in the tree using the following formulas: k1 = 4k1, k2 = k2, k3 = k3,
if n ≡ 0 (mod 4); k1 = 4k1, k2 = k2, k3 = k3 + k1 if n ≡ 1 (mod 4); k1 = 2k1,
k2 = k2, k3 = k3 if n ≡ 2 (mod 4); and k1 = 4k1, k2 = k2 + k1, k3 = k3
if n ≡ 3 (mod 4). In practice, this algorithm does not allow to find all the
NON-NADS when x is large due to the exponential time complexity of the tree
exploration. However, it can be used to reduce the time complexity of Find-
NADS by finding all NON-NADS that have cycles of length lower or equal to
tmax such that tmax is small enough. Indeed, determining all NON-NADS having
small cycles is much more faster with Elim-NON-NADS than with the basic Find-
NADS. Consequently, finding all NON-NADS can be improved using a trade-off
between Elim-NON-NADS and the basic Find-NADS. tmax is the parameter of the
trade-off. As described in the appendix, Find-NADS uses Elim-NON-NADS as a
sieve in a first stage in order to rough out the search process.

4.4 Experimental Results and Memory Complexity

We give in this section some experimental results in order to compare the per-
formances of the presented algorithms. The tests were done on a standard work-
station. We experimented the following algorithms whose results are given in
Table 1 and represented in Fig. 2.

1. Curve A: the basic algorithm [15]; we ran the C source code that the authors
gracefully provided to us.

Advances in Alternative Non-adjacent Form Representations 271

2. Curve B: the improved basic algorithm [16]; we implemented ourself the
algorithm Is-NADS? provided in [16]. We implemented then the algorithm
Find-NADS using a sieve to eliminate NON-NADS characterized by Theo-
rem 5 initially proposed in [11] and Theorem 6.

3. Curve C: our algorithm, takes benefit of our new theoretical results pre-
sented in Sections 3.1 and 3.2, and practical results described in Sections 4.2
and 4.3. It is actually a trade-off of parameter tmax = 10 between the im-
proved version of Find-NADS and Elim-NON-NADS. The pseudo-code of this
algorithm is given in the appendix.

Note that the three implementations have been compared in a fair way (as
much as possible). They have been implemented in C, compiled with the same
optimization options, and executed on the same AMD AthlonTM XP2500+ pro-
cessor. We did not try to minimize the running time of the algorithms by using
some special low level functions of the language. We would like to emphasize that
the memory complexity in the worse case, that is when all the cycle lengths equal

Table 1. Running time of the experimented algorithms

xmax Running time (seconds)
Basic algorithm Improved basic algorithm Our algorithm

(curve A) (curve B) (curve C)
−105 7 1 <1
−106 655 15 3
−3 · 106 1550 137 35
−6 · 106 6132 435 127
−10 · 106 68532 1154 343
−13 · 106 – 1460 438
−17 · 106 – 2454 724

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

T
im

e
(s

ec
on

ds
)

-x

Curve A

Curve B

Curve C

Fig. 2. Running time of the experimented algorithms

272 G. Avoine, J. Monnerat, and T. Peyrin

�−x
3 �, is the same whatever the algorithm is. Indeed, the memory complexity is

in the worse case O(|x| log |x|). Our algorithm requires however slightly more
memory on average due to the precomputation steps. It fits nevertheless into a
quite small memory since it requires only a few tens of megabytes of RAM.

5 Conclusion

We extended in this paper previous works mainly done by Muir and Stinson [15,
16]. Our main contribution consists of a method providing generators of NON-
NADS infinite families and a reduction of the search domain to the interval
[0, �−x

12 �] ∪ [�−x
7 �, �−x

6 �] when x is not divided by 3 and 7. We claimed that
we can still reduce it to [0, �−x

12 �]. We also introduced the notion of worst NON-
NADS and characterized them. From these new theoretical results, we suggested
some algorithmic improvements that reduce significantly the running time of the
algorithm Find-NADS. Our algorithm takes only 343 seconds when xmax = −107,
while the best known algorithm [16] took about 20 minutes.

References

1. A. Booth. A signed binary multiplication technique. The Quarterly Journal Me-
chanics and Applied Mathematics, 4:236–240, 1951.

2. W. Bosma. Signed bits and fast exponentiation. Journal de théorie des nombres
de Bordeaux, 13(1):27–41, 2001.

3. E. De Win, S. Mister, B. Preneel, and M. Wiener. On the performance of signature
schemes based on elliptic curves. In J. Buhler, editor, Algorithmic Number Theory,
ANTS-III, LNCS 1423, pp. 252–266, USA, 1998. Springer.

4. K. Fong, D. Hankerson, J. López, and A. Menezes. Field inversion and point halving
revisited. IEEE Transactions on Computers, 53(8):1047–1059, August 2004.

5. D. Gordon. A survey of fast exponentiation methods. Journal of Algorithms,
27(1):129–146, 1998.

6. J. Jedwab and C. Mitchell. Minimum weight modified signed-digit representations
and fast exponentiation. Electronics Letters, 25(17):1171–1172, 1989.

7. M. Joye and C. Tymen. Compact encoding of non-adjacent forms with applications
to elliptic curve cryptography. In K. Kim, editor, PKC 2001, LNCS 1992, pp. 353–
364, Korea, 2001. Springer.

8. M. Joye and S. Yen. Optimal left-to-right binary signed-digit recoding. IEEE
Transactions on Computers, 49(7):740–748, 2000.

9. K. Koyama and Y. Tsuruoka. Speeding up elliptic cryptosystems by using a signed
binary window method. In E. Brickell, editor, CRYPTO’92, LNCS 740, pp. 345–
357, USA, 1992. IACR, Springer.

10. L. Lalanne. Note sur quelques propositions d’arithmologie élémentaire. Comptes
rendus hebdomadaires des séances de l’Académie des sciences, 11:903–905, 1840.

11. D. Matula. Basic digit sets for radix representation. Journal of the Association
for Computing Machinery, 29(4):1131–1143, 1982.

12. K. Okeya and T. Takagi. The Width-w NAF Method Provides Small Memory and
Fast Elliptic Scalar Multiplications Secure against Side Channel Attacks. CT-RSA,
LNCS 2612, pp. 328–343, USA, 2003. Springer.

Advances in Alternative Non-adjacent Form Representations 273

13. K. Okeya and T. Takagi. A More Flexible Countermeasure against Side Channel
Attacks Using Window Method. CHES 2003, LNCS 2779, pp. 397–410, Germany,
2003. IACR, Springer.

14. F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using
addition-subtraction chains. RAIRO – Theoretical Informatics and Applications,
24(6):531–543, 1990.

15. J. Muir and D. Stinson. Alternative digit sets for nonadjacent representations.
In M. Matsui and R. Zuccherato, editors, SAC 2003, LNCS 3006, pp. 306–319,
Canada, 2003. IACR, Springer.

16. J. Muir and D. Stinson. Alternative digit sets for nonadjacent representations.
Technical Report CORR 2004-09, Centre for Applied Cryptographic Research,
University of Waterloo, Canada, 2004, http://www.cacr.math.uwaterloo.ca.

17. G. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231–308, 1960.
18. J. Solinas. An improved algorithm for arithmetic on a family of elliptic curves.

In B. Kaliski, editor, Crypto’97, LNCS 1294, pp. 357–371, USA, 1997. IACR,
Springer.

19. J. Solinas. Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptogra-
phy, 19(2–3):195–249, 2000.

Appendix: The Final Algorithms

Algorithm: Find-NADS(xmax, tmax)

NADS← ∅

Classes(xmax)
Elim-NON-NADS(xmax, tmax)

for i = −1 to i = xmax

do

⎧⎨
⎩

if (Is-NADS? (i))
then NADS← NADS ∪ {i}

i← i− 4

return NADS

Algorithm: Is-NADS?(x)

N ← 3
T ← ∅

while N < −x
12

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n← N
S ← ∅

while n �= 0

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if n ∈ S
then return false

if n ∈ T
then break

S ← S ∪ {n}
T ← T ∪ {n}
if n ≡ 3 (mod 4)

then n← n−x
4

else
then n← V [n]

N ← N + 4

return true

Fig. 3. Final algorithms

274 G. Avoine, J. Monnerat, and T. Peyrin

Algorithm: Classes(xmax)

for i = 3 to i = −xmax
3

do
{

Classes-rec(xmax, i, i)
i← i + 4

Algorithm: Classes-rec(xmax, nseed, ncur)

V [ncur]← nseed

if ncur < −xmax
3⎧⎨

⎩
Classes-rec(xmax, nseed, 2 · ncur)
Classes-rec(xmax, nseed, 4 · ncur)
Classes-rec(xmax, nseed, 4 · ncur + 1)

Fig. 4. Precomputation: the classes of equivalence

Algorithm: Elim-NON-NADS(xmax, tmax)

Elim-NON-NADS-rec(xmax, 4, 1, 0, “0”, 1, tmax)

Algorithm: Elim-NON-NADS-rec(xmax, k1, k2, k3, eprev, tcur, tmax)

if eprev �= “0x”⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i = 3 to i = −xmax
6

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xcur = −i·(k1−1)+k3
k2

if (xcur is integer) and (xcur ≡ 3 (mod 4))
then B[xcur]← true

i← i + 4

if tcur ≤ tmax⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if eprev �= “0”⎧⎪⎪⎨
⎪⎪⎩

Elim-NON-NADS-rec(xmax, 4 · k1, k2, k3, “00”, tcur + 1, tmax)
Elim-NON-NADS-rec(xmax, 4 · k1, k2, k3 + k1, “01”, tcur + 1, tmax)
Elim-NON-NADS-rec(xmax, 2 · k1, k2, k3, “0”, tcur + 1, tmax)
Elim-NON-NADS-rec(xmax, 4 · k1, k2 + k1, k3, “0x”, tcur + 1, tmax)

else{
Elim-NON-NADS-rec(xmax, 4 · k1, k2, k3 + k1, “01”, tcur + 1, tmax)
Elim-NON-NADS-rec(xmax, 4 · k1, k2 + k1, k3, “0x”, tcur + 1, tmax)

Fig. 5. Precomputation: the sieve

	Introduction
	Preliminaries and Previous Works
	Definitions and Notation
	Characterization of NADS

	New Theoretical Results
	Improvement on the Search Domain
	Generators of Infinite Families of NON-NADS
	Worst NON-NADS

	Algorithmic Considerations
	Basic Algorithm
	Intra-X and Inter-X Techniques
	Algorithm Based on Elimination of NON-NADS
	Experimental Results and Memory Complexity

	Conclusion

