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Abstract. In 2001, Bellare, Namprempre, Pointcheval and Semanko introduced
the notion of “one-more” computational problems. Since their introduction, these
problems have found numerous applications in cryptography. For instance, Bel-
lare et al. showed how they lead to a proof of security for Chaum’s RSA-based
blind signature scheme in the random oracle model.

In this paper, we provide separation results for the computational hierarchy of
a large class of algebraic “one-more” computational problems (e.g. the one-more
discrete logarithm problem, the one-more RSA problem and the one-more static
Computational Diffie-Hellman problem in a bilinear setting). We also give some
cryptographic implications of these results and, in particular, we prove that it is
very unlikely, that one will ever be able to prove the unforgeability of Chaum’s
RSA-based blind signature scheme under the sole RSA assumption.
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1 Introduction

BACKGROUND. In cryptography, a one-way function f is a function that can be com-
puted by some algorithm in polynomial time (with respect to the input size) but such
that no probabilistic polynomial-time algorithm can compute a preimage of f(x) with
a non-negligible probability, when x is chosen uniformly at random in the domain of f .
At the very beginning of the century, it has been observed that there seems little hope of
proving the security of many cryptographic constructions based only on the “standard”
one-wayness assumption of the used primitive. The security of some schemes seems
to rely on different, and probably stronger, properties of the underlying one-way func-
tion. Cryptographers have therefore suggested that one should formulate explicit new
computational problems to prove the security of these protocols. For instance, Okamoto
and Pointcheval [14] introduced in 2001 a novel class of computational problems, the
gap problems, which find a nice and rich practical instantiation with the Diffie-Hellman
problems. They used the gap Diffie-Hellman problem for solving a more than 10-year
old open security problem: the unforgeability of Chaum-van Antwerpen undeniable
signature scheme [11].
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In 2001, Bellare, Namprempre, Pointcheval and Semanko [2] introduced the notion
of one-more one-way function. A function is one-more one-way if it can be computed
by some algorithm in polynomial time (in the input size) but for which there exists no
probabilistic polynomial-time algorithm A with non-negligible probability to win the
following game:

– A gets the description of f as input and has access to two oracles;
– an inversion oracle that given y in f ’s codomain returns x in f ’s domain such

that f(x) = y;
– a challenge oracle that, each time it is invoked (it takes no inputs), returns a

random challenge point from f ’s codomain;
– A wins the game if it succeeds in inverting all n points output by the challenge

oracle using strictly less than n queries to the inversion oracle.

Bellare et al. showed how these problems lead to a proof of security for Chaum’s RSA-
based blind signature scheme [10] in the random oracle model.

The approach consisting in introducing new computational problems to study the
security of cryptosystems is not completely satisfactory since the proof of security often
relies on an extremely strong assumption which is hard to validate. Nevertheless, it is
better to have such a security argument than nothing since as mentioned in [2]: “These
problems can then be studied, to see how they relate to other problems and to what
extent we can believe in them as assumptions.” The purpose of this paper is to study the
hierarchy of the computational difficulty of the “one-more” problems of Bellare et al.
and its cryptographic implications. In particular, we prove that it is very unlikely, that
one will ever be able to prove the unforgeability of Chaum’s RSA-based blind signature
scheme under the sole RSA assumption.

RELATED WORK. Since the one-more-inversion problems were introduced in [2], they
have found numerous other applications in cryptography.

– Bellare and Palacio [4] proved in 2002 that Guillou-Quisquater and Schnorr identi-
fication schemes [12,17] are secure against impersonation under active (and concur-
rent) attack under the assumption that the one-more RSA problem and the one-more
discrete logarithm problem are intractable (respectively).

– Bellare and Neven [3] proved the security of an RSA based transitive signature
scheme suggested by Micali and Rivest in 2002 [13] under the assumption of the
hardness of the one-more RSA problem.

– Bellare and Sandhu had used the same problem to prove the security of some two-
party RSA-based signature protocols [5].

– In [6], Boldyreva proposed a new blind signature scheme – based on Boneh-Lynn-
Shacham signature [7] – which is very similar to the RSA blind signature protocol.
She introduced a new computational problem: the one-more static Computational
Diffie-Hellman problem (see also [9]) and proved the security (in the random oracle
model) of her scheme assuming the intractability of this problem.

– Paillier and Vergnaud [15] provided evidence that the security of Schnorr signa-
tures [17] cannot be equivalent to the discrete log problem in the standard model.
They proposed a method of converting a reduction of the unforgeability of this
signature scheme to the discrete logarithm problem into an algorithm solving the
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one-more discrete log problem. Their technique applies whenever the reduction
belongs to a certain “natural” class of reductions that they refer to as algebraic
reductions.

CONTRIBUTIONS OF THE PAPER. Following the approach from [15], we give argu-
ments showing that, for any integer n > 1, solving the one-more problem with access
to the inversion oracle up to n times cannot be reduced to the resolution of this problem
with access to this oracle limited to n + 1 queries. Our results apply to the class of
black-box reductions and are extended in the case of the one-more discrete logarithm
problems to a class of algebraic black-box reductions.

These separation results apply to many computational problems used in the cryp-
tographic literature, like the one-more RSA problem and the one-more static Diffie-
Hellman problem in a bilinear setting. Due to the equivalence of the unforgeability of
Chaum and Boldyreva blind signatures [10,6] and the intractability of the one-more
RSA problem and the one-more static Diffie-Hellman problem in a bilinear setting, our
results imply that it is very unlikely, that one will ever be able to prove the unforgeabil-
ity of these schemes under the sole assumption of the one-wayness of their respective
underlying primitive.

We stress that our work sheds more light on the computational complexity of these
problems but does not explicitly lead to actual way to solve them. Finally, we mention
that Brown [8] independently found similar separation results1.

2 Preliminaries

NOTATIONS. Taking an element x uniformly at random from a set X will be denoted
x ←U X . Assigning a value a to a variable x is denoted by x ← a. Algorithms are
modeled by probabilistic Turing machines and are usually considered polynomial-time.
The term “efficient” will refer to polynomial-time. We write A(�; �) the output of
algorithm A when running on input � and using random �. With A(�), we mean the
random variable resulting from A(�; �) by choosing � uniformly at random. For any
algorithm A, T (A) denotes its running time. An algorithm A with a black-box oracle
access to an algorithm B is denoted AB .

BLACK-BOX REDUCTIONS. An algorithm R is said to be a black-box reduction from
a problem P2 to a problem P1 if for any algorithm A solving P1, algorithm RA solves
P2 thanks to a black-box access to A. Below, we provide more details about our black-
box model. Namely, we describe what we mean by a “black-box access” and give a
characterization of the classes of algorithms A we will consider. In other words, we
specify which algorithms are transformed by R and how R can interact with them.

BLACK-BOX ACCESS. A black-box access essentially means that R is allowed to use
A as a subroutine without taking advantage of its internal structure (code). R can only
provide the inputs to A and observe the resulting outputs. If A has access to an oracle,

1 His paper appeared on the IACR eprint, while our paper was already under submission. His
work is based on the very same core idea but does not explicitly handle the case where reduc-
tions make use of rewinding techniques.
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the corresponding queries must be answered by R. In other words, the reduction should
simulate A’s environment through its input-output interface.

When A is probabilistic, a new black-box access by R results in a new execution of
A with fresh random coins. In this paper, we do not consider the random tape of A to be
seen by R. This is in accordance with the work by Barak [1] saying that the knowledge
of such randomness can hardly help a black-box reduction.

As usually in the literature, we allow R to rewind A with a previously used random
tape. Our approach is formalized by restricting the reduction R to sequentially execute
some of the following operations when interacting with A:

– Launch. Any previously launched execution of A is aborted. R launches a
new execution of A with a fresh random tape � on an input of its choice.

– Rewind. Any previously launched execution of A is aborted. R restarts A with
a previously used random tape and an input of its choice.

– Stop. R definitely stops the interaction with A.

We assume that all executions with fresh random tapes are uniquely identified so that
R can make some “Rewind” without explicitly knowing these random tapes. Note that
a call of any above procedure is counted as a single time unit in the complexity of R.

For some results, we will need to consider a weaker model obtained by relaxing the
“Rewind” queries made by R. Instead, we only tolerate a kind of weak rewinding of A
with the same random tape and its corresponding input. So, in this weaker model, we
replace the “Rewind” queries by the following one:

– Relaunch. Any previously launched execution of A is aborted. R restarts A
with a previously used random tape and the corresponding input.

Hence, rewinding techniques which restart A on the same random tape and a dif-
ferent input are not allowed in this model. As a consequence, reductions involving
“forking-Lemma”-like [16] techniques are not considered. We however point out that a
“Relaunch” query can be useful to R when A has access to some oracles. Namely, R
may differently simulate the oracle outputs from an execution to another one in order
to gain some information to solve its challlenge.

CLASSES OF ALGORITHMS. For any τ and ε non-negative functions defined on N and
a computational problem P with associated security parameter k ∈ N, an algorithm A
is said to be an (ε, τ)-P solver if it succeeds in solving P (fed with k) with probability
at least ε(k) and at most time complexity τ(k) for any k ∈ N, where the probability
is over random tapes of all involved algorithms. We denote by CL(P, ε, τ) the class of
such probabilistic algorithms. We say that R is an (ε1, τ1, ε2, τr)-reduction from P2 to
P1 if it transforms any algorithm in CL(P1, ε1, τ1) into a P2-solver with success prob-
ability greater or equal to ε2 and the running time of R is less or equal to τr. Usually,
black-box reductions transform any adversary with a given success probability without
any consideration of the time complexity of this one. In this case, we have τ1(k) = +∞
for any k ∈ N and use the term of (ε1, ε2, τr)-reduction from P2 to P1 reduction. We
call such reductions “classical” while those transforming only bounded adversaries are
called “sophisticated” reductions. As far as we know, we are not aware of the existence
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in the literature of “sophisticated” reductions which are not implicitly classical, i.e.,
which do not succeed in transforming adversaries with a greater complexity than the
given τ1.

BLACK-BOX SEPARATIONS. A black-box reduction R from P2 to P1 can just be seen
as an oracle Turing machine solving the problem P2. Thus it can be transformed through
a so-called meta-reduction to solve another problem (say, P3). When the latter is as-
sumed to be hard, an efficient meta-reduction rules out the existence of R, hence prov-
ing a separation between problems P1 and P2. In other words, it proves that P2 is strictly
harder than P1, conditioned by the hardness of P3.

More formally, the construction is as follows. We start from the reduction R from
P2 to P1. Our goal is to specify an algorithm M that solves the problem P3, having
a black-box access to R. The algorithm M needs to simulate the environment of R,
i.e., all its oracles, and in particular, the correct behavior of the P1-solver. In the present
work, such correct behavior (viewed from R) is formalized by assuming that the P1-
solver belongs to a certain class CL(P1, ε, τ) for some given ε and τ . However, in the
classical case, the reduction is (formally) able to transform any P1-solver2 whatever its
running time is (τ = +∞).

In this work, we will focus on “classical” reductions but also show that our results
hold for “sophisticated” reductions in the weaker model, where “Rewind” queries are
replaced by the “Relaunch” ones. In this case, we confine the P1 to a given finite τ ,
thus to a smaller class CL(P1, ε, τ). Hence, by restricting the class of solvers that the
reduction R is able to deal with, we enlarge the class of such reductions. In fact, the
smaller τ is, the bigger the number of possible reductions do exist. Thus, excluding the
existence of such reductions using a meta-reduction leads to a separation result which
is at least as strong as the case where τ = +∞.

We may wonder whether this is strictly stronger to do so. Usually the reduction
should not care about the complexity of the P1-solver which is treated as a black-box
and for which an access is counted as a single unit anyway. However, when the P1-
problem is specified with some oracle access to a solver (as for the “one-more” prob-
lems), one must be more careful. The main reason is that there may be a correlation
between the “external behavior” of a P1-solver and its complexity. What we call the
“external behavior” of an algorithm corresponds to the distribution of both the interme-
diate outputs (queries) sent to the oracles and the final output. As a result, a reduction
may be able to only transform the P1-solvers with a specific “external behavior”, guar-
anteed by the bound τ . For instance, a one-more discrete logarithm solver which would
never query the discrete logarithm oracle must be a discrete logarithm solver. Assuming
that no discrete logarithm solver exists with a time less than τ , a sophisticated reduction
knows that it does not need to transform such an n-DL solver.

When devising the meta-reduction M, this difficulty is induced in the simulation of
the P1-solver. To be more explicit, the meta-reduction needs to simulate a P1-solver
with the correct “external behavior”, since this one may need to comply to a specific
form when τ is finite. In our results, the class CL(P1, ε, τ) will be chosen so that M
will simulate the correct behavior of a solver of this class.

2 Of course, for a cryptographic result to make sense in practice, the solver is restricted to
polynomial-time.
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3 Random Self-reducible Problems

3.1 Definitions

Let P = (PG, IG) be a generic computational problem, where PG is a parameter genera-
tor and IG is an instance generator3. Given a security parameter k ∈ N, the probabilistic
polynomial-time algorithm PG(1k) generates some parameters param. These parame-
ters notably characterize an instance set I and a solution set S. The instance generator
IG takes param as input and outputs an instance ins ∈ I.

We assume that there exists an efficient verification algorithm V(param,ins,sol)
that, for any (ins,sol) ∈ I × S, outputs 1 if sol is a solution to ins (with respect
to param) and 0 otherwise. For an algorithm A, we consider the following experiment:

Experiment ExpP
A(k).

param ← PG(1k)
ins ← IG(param)
sol ← A(param,ins)
Output V(param,ins,sol)

The success probability of A is SuccP
A(k) = Pr[ExpP

A(k) = 1], where the probability
is taken over the random coins of all algorithms PG, IG and A.

We introduce the “one-more” variants of the problem P. Let n be a non-negative
integer. We denote by OP an oracle which perfectly solves the problem P, that is, on
any input ins ∈ I, the oracle outputs some sol such that V(param,ins,sol) = 1.
The one-more n-P problem is defined by the following experiment for an algorithm A.

Experiment Expn-P
A (k).

param ← PG(1k)
For i = 0, . . . , n, generate insi ← IG(param; �i) with fresh
random tapes �0, . . . , �n.
(sol0, . . . ,soln) ← AOP(ins0, . . . ,insn)
If V(param,insi,soli) = 1 for i = 0, . . . , n and A made at
most n queries to OP output 1 else output 0

The success probability of A is Succn-P
A (k) = Pr[Expn-P

A (k) = 1], where the prob-
ability is taken over the random coins of all involved algorithms. For any functions
ε, τ : N → R, an algorithm A ∈ CL(n-P, ε, τ) is called an (ε, τ)-n-P solver.

Proposition 1 (Reduction from (n + 1)-P to n-P). Let n, m be two integers such that
n < m. Then the m-P problem cannot be harder than the n-P problem.

We omit the proof since it is elementary. We now give a definition for a computational
problem P to be random self-reducible.

Definition 2 (Random self-reducibility). A problem P defined as above is said to be
random self-reducible if there exists an efficient blinding algorithm B and an efficient
un-blinding algorithm UB such that for any k ∈ N, any string param generated by PG,
and any element ins ∈ I:

3 We separate PG and IG for exposition convenience.



Separation Results on the “One-More” Computational Problems 77

1. B(param,ins; �) is a uniformly distributed element insbl in I, w.r.t. the random
choice of �;

2. for any random tape �, any blinded instance insbl generated by B from instance
ins using random tape �, the algorithm UB satisfies

V(param,insbl ,solbl) = 1 =⇒ V(param,ins, UB(param,solbl ; �)) = 1.

In what follows, we denote by Ω the set of random tapes � used by B (and UB) and
the time complexity of algorithms B, UB, V by τ

BL
, τ

UB
, τ

VER
respectively. We remark

that our definition is similar to that of Okamoto-Pointcheval [14] except that we do not
require that UB outputs a uniform element in S. Our definition is also like that given by
Tompa-Woll [18] with the relaxation of a similar condition. Note that both the discrete
logarithm and the RSA inversion problems satisfy this definition.

3.2 Black-Box Separation

Definition 3 (Parameter-invariant reductions). Let n and n′ be some non-negative
integers. A black-box reduction R from n-P to n′-P is said to be parameter-invariant
if R only feeds the n′-P-solver with challenges containing the same string param that
was in the challenge given to R.

We first assume that the reduction executes the (n + 1)-P-solver at most one time and
never rewinds.

Lemma 4 (Separation, basic case). Let n be a non-negative integer and ε, ε′, τr be
some positive functions defined on N. We set τ

TOT
:= τ

BL
+τ

UB
+τ

VER
. There exists a meta-

reduction M such that, for any parameter-invariant black-box (ε, ε′, τr)-reduction R
from n-P to (n + 1)-P which makes at most only one “Launch” (and no “Rewind”)
query to the (n + 1)-P-solver, MR is an (ε′, τr + (n + 1) · τ

TOT
)-n-P solver.

Proof. First, remark that for any ε > 0 there exists a (n + 1)-P-solver that succeeds
with probability ε. This is because P is verifiable so the exhaustive search is possible,
and that we do not consider the execution time at that point. Moreover, we can assume
that this solver always makes n + 1 uniformly distributed queries to OP. We denote
this (naive) algorithm by A1. It receives as input an instance of (n + 1)-P, picks n + 1
uniform random P-instances ins∗

1, . . . ,ins
∗
n+1 ∈U I, and submits them sequentially

to OP. For each query, A1 checks the answer of OP using the verification algorithm V
and if one answers is wrong, A1 outputs ⊥ and aborts. Otherwise, it does an exhaustive
search and outputs the correct answer of the (n + 1)-P challenge with probability ε.

One may wonder why it is necessary to check the validity of the OP oracle, since we
have assumed it is a perfect oracle. Indeed, in the real Exp(n+1)-P

A (k) experiment, such
a verification is always successful (A1 never outputs ⊥). However these checks will be
crucial in the simulated experiment in which OP is simulated by R, which can possibly
cheats. We also emphasize that the queries ins∗

i are always the same if the random
tape of A1 and param are the same.

DESCRIPTION OF THE META-REDUCTION. We now explain how to build a meta-
reduction M that solves the n-P problem. First, M is given access to a OP-oracle (with
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at most n queries allowed) and receives an n-P challenge (param,ins0, . . . ,insn).
Then it will use R to solve it, by simulating adversary A1 (which is assumed to make
uniform queries). To this goal, M simply feeds R with the given challenge. Remind
that R has oracle access to OP and A1 (the so-called “Launch” query), so M must
be able to answer both types of queries. The OP queries are answered in a trivial way;
namely, M simply forwards the queries to its oracle OP. Below, we describe how M
processes the (unique) “Launch” query made by R, by simulating the execution of A1.

Launch(param,ins′
0, . . . ,ins

′
n+1)

for i = 0, 1, . . . , n do
�i ←U Ω
bl-insi ← B(param,insi; �i)
Submit bl-insi to OP (simulated by R) and receive bl-soli

soli ← UB(param,bl-soli; �i)
if 0 ← V(param,insi,soli) then

Return ⊥
Abort the interaction with R

If all the OP-queries are correctly answered by R, the meta-reduction aborts the
interaction with R after the (n+1)-th OP-query, and simply returns (sol0, . . . ,soln)
as the solution of the n-P problem given as input. On the other hand, if the simulation
of the oracle appears to be wrong, the “Launch” query is answered with ⊥ — this
correctly simulates the behavior of A1 described at the beginning of the proof. In that
case, the reduction eventually outputs a tuple that M just relays as its own answer. If
R does not ask any “Launch” query or decides to prematurely “Stop” the interaction
with A1, then M also outputs the same answer as R.

In simulating A1, M needs to run the algorithms B, UB, and V once per query to
OP. Since M launches R one time, we get T (MR) ≤ τr + (n + 1) · τ

TOT
.

PROBABILITY ANALYSIS. Let SuccR and SuccM be the events that “R succeeds” and
“M succeeds” respectively. Let us denote Good the event, where R correctly answers to
all OP queries made by A1. In particular, event ¬Good includes the executions in which
R does not make any “Launch” query or prematurely stops the interaction with A1.
From the above description, we can easily see that, if Good occurs, M always recovers
the correct solutionssoli for i = 0, . . . , n. On the other hand, if ¬Good occurs, M out-
puts whatever R outputs, and thus we have Pr[SuccM|¬Good] = Pr[SuccR|¬Good].
Then we obtain

Pr[SuccM] = Pr[SuccM|Good] · Pr[Good] + Pr[SuccM|¬Good] · Pr[¬Good]
= Pr[Good] + Pr[SuccR|¬Good] · Pr[¬Good]
≥ Pr[SuccR ∧ Good] + Pr[SuccR ∧ ¬Good] = Pr[SuccR] ≥ ε′,

which concludes the proof. ��

Theorem 5 (Separation, general case). Let n, ε, ε′, τr, τTOT
be as in Lemma 4. There

exists a meta-reduction M such that, for any parameter-invariant black-box (ε, ε′, τr)-
reduction R from n-P to (n + 1)-P which makes at most � queries “Launch” or
“Rewind” to the (n + 1)-P-solver, MR is an (ε′, τr + (n + 1)� · τ

TOT
)-n-P-solver.



Separation Results on the “One-More” Computational Problems 79

Proof. The proof works like in Lemma 4 except that M needs to deal with possibly
many runs and/or rewindings of the (n + 1)-P-solver A1. We summarize how we deal
with the queries of type “Launch” and “Rewind”.

Launch. For each such query, M needs to simulate a new execution of A1 with fresh
random coins. The simulation works like for Lemma 4. The main difference is that,
when a wrong simulation of OP leads to an abortion of A1, the reduction R is allowed
to continue with a new query “Launch” or “Rewind”. The same holds if R aborts
the current execution by itself by just making a new query. This does not affect the
simulation of A1 by M, which simply waits for a correct simulation of OP by R on the
n + 1 queries4.

Rewind. The simulation of such an execution is done similarly as for “Launch” except
that the randomness is not fresh. This implicitly means that M keeps track of the history
of previous A1’s executions in a non-ambiguous way. Recall that the OP queries made
by A1 does not depend on the received n-P instance, but only its random tape and
param, which is unchanged by definition. Thus, if R rewinds several times, M can
simulate correctly: the same queries to the OP oracle are repeated from a previous
execution, and a wrong answer is still detected, leading to an abortion. In that case, R
continues with another query “Launch” or “Rewind”, or makes its final “Stop”. As
above, M stops the execution if it receives all answers of the queries sent to OP and
wins the game5. If this does not occur, M simply answers the R output to its challenger.

A probability analysis as in Lemma 4 shows that M succeeds with probability at
least ε′. The running time of MR is easily upper-bounded by τr + (n + 1)� · τ

TOT
. ��

Remark 6. We observe that the reduction R solves the n-P problem using an (n + 1)-P
solver as a subroutine, while our meta-reduction M solves the same problem without
such subroutine (but with access to R). Thus, if the n-P problem is hard, the existence
of an efficient M shows that there cannot exist an efficient black-box algorithm R from
the n-P problem to the (n + 1)-P problem. On the other hand, if the n-P problem is
easy, we know that the (n + 1)-P problem is easy as well, and so basing the security of
cryptographic schemes on these problems (m-P for m ≥ n) would be hopeless.

Remark 7. Note that if the problem P is not efficiently verifiable, the above result does
not apply anymore. For instance, this does not work with the one-more (static) Com-
putational Diffie-Hellman, except in a group with an easy decisional Diffie-Hellman
problem (DDH). Namely, if R simulates the oracle by answering random elements, the
adversary A1 cannot easily detect that the simulation is not correct unless this one can
solve DDH. However, in the context of pairing cryptography the bilinear pairing allows
to efficiently solve DDH. In this case, our results apply to the one-more CDH.

4 Note that we can optimize by simply waiting until M could get n+1 correct answers of fresh
queries made to OP, even if these ones were not made during one single execution of A1. For
this, M should not re-use a solved insi by sending a new blinded insi value to OP in a
subsequent fresh (new random tape) execution of A1.

5 Though the queries are the same, R may simulate OP in a different way. In particular, it may
succeed in simulating OP, even if it failed to do so in a previous execution.
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3.3 The Case of Sophisticated Reductions

Here, we investigate our separation results in the context of “sophisticated” reductions,
i.e., those which are supposed to only transform a class of algorithms with a bounded
time complexity. In what follows, we are able to exhibit such a separation under the
assumption that the reduction does not rewind the adversary with the same random and
a different input.

Theorem 8 (Sophisticated reductions). Let n, ε, ε′, τr, τTOT
be as in Lemma 4. Con-

sider τ0 : N → R an arbitrary time-complexity upper bound of some existing (n+1)-P
solver succeeding with probability greater or equal to ε. In other words, we assume

CL((n + 1)-P, ε, τ0) 
= ∅.

Let τ such that τ(k) ≥ τ0(k) + (n + 1) · τ
TOT

(k) for any k ∈ N. There exists a
meta-reduction M such that, for any “sophisticated” parameter-invariant black-box
(ε, τ, ε′, τr)-reduction R from n-P to (n + 1)-P making at most � queries “Launch”
or “Relaunch” to the (n + 1)-P-solver, MR is an (ε′, τr + (n + 1)� · τ

TOT
)-n-P-solver.

Proof. The proof is similar to that of Theorem 5 except that the existence of a certain
(n + 1)-P-solver A1 belonging to CL((n + 1)-P, ε, τ) needs to be shown (A1 is no
more a naive algorithm). It is constructed as follows.

By definition of τ0, there exists an algorithm A0 belonging to the class CL((n + 1)-
P, ε, τ0). The algorithm A1 receives as input an instance of the (n + 1)-P-problem,
starts A0 with this input, processes the A0’s queries as explained hereafter, and finally
outputs whatever A0 outputs. For each OP query ins, A1 picks a uniformly distributed
random tape � and computes insbl ← B(param,ins; �). It then queries insbl to
OP and gets the answer solbl. It checks whether V(param,insbl,solbl) → 1: if it is
the case, it forwards sol ← UB(param,solbl; �) as the answer to A0, otherwise it
terminates and outputs ⊥. If A0 asks less than n + 1 queries to OP, A1 asks as many
uniformly distributed random queries as necessary.

This algorithm A1 has the same behavior as in Theorem 5 (it always makes (n + 1)
uniform queries), except that for a given randomness the queries to OP may depend on
the input. The rest of the proof works like for Theorem 5. In particular, M simulates A1
in the very same way and handles the “Relaunch” queries made by R as the “Rewind”
ones in the proof of Theorem 5. ��
Remark 9. The difficulty of extending the above proof to “Rewind” queries comes
from our inability to correctly simulate A1 after a rewinding of R with a different in-
put. Since A1 must be restarted with the same random tape, we cannot produce uniform
OP-queries anymore: the blinding on a different input with the same randomness would
produce different blinded queries, while in Theorem 5 the queries should not change in
case of a “Rewind”.

4 One-More Discrete Logarithm Problems

4.1 Definitions

Let k ∈ N be a security parameter and Gen be an efficient algorithm taking k (or 1k)
as input and which outputs the description of a cyclic group G of prime order (written
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multiplicatively), a generator g of G, and the k-bit prime group order q = #G. We
assume that elementary group operations in G can be done efficiently, i.e., g1g2 and
g−1
1 can be efficiently computed for any g1, g2 ∈ G, and we denote by τ

EXP
the time

required for computing an exponentiation gx, where x ∈ [1, q]. We also consider a per-
fect discrete logarithm oracle DLg , i.e., an oracle which on any queried element always
answers its discrete logarithm with respect to g. For a non-negative integer n, the n-DL
problem (one-more discrete logarithm) consists in extracting the discrete logarithms of
n + 1 elements of G with respect to g using at most n queries to the oracle DLg. More
formally, for an algorithm A, we consider the following experiment [2]:

Experiment Expn-DL
Gen,A(k).

(G, q, g) ← Gen(1k)
(t0, t1, . . . , tn) ←U Zn+1

q ; yi ← gti for i = 0, . . . , n

(t′0, . . . , t
′
n) ← ADLg (G, g, q, y0, . . . , yn)

Return 1 if the following conditions hold else return 0
– t′i ≡ ti (mod q) for all i = 0, . . . , n
– DLg has been queried at most n times

We define the success probability of A in the above experiment as

Succn-DL
Gen,A(k) = Pr[Expn-DL

Gen,A(k) = 1],

where the probability is taken over the ti’s and the random tapes of Gen and A.
For any functions ε, τ : N → R, we denote by DL(n, ε, τ) the set CL(n-DL, ε, τ).

An algorithm A of this class is said to be an (ε, τ)-n-DL solver.

4.2 Algebraic Separations

First, we note that Theorems 5 and 8 apply to the discrete logarithm problems if we as-
sume that the reduction is base-invariant, i.e., it always feeds the (n+1)-DL solver with
the same group G and generator g given in the n-DL experiment. In what follows, we
show that we can extend these separation results to some non-invariant base (but same
group) reductions under the assumption that these reductions are algebraic. We restrict
to classical black-box reductions with rewinding and follow the spirit of Theorem 5. A
treatment of “sophisticated” reductions with a rewinding relaxation (as in Theorem 8)
can be done in the very same manner so that we omit such a presentation.

ALGEBRAIC ALGORITHMS. We use the concept of algebraic algorithms introduced
by Paillier and Vergnaud [15]. Roughly, an algorithm R is algebraic with respect to a
cyclic group G (of order q) if any element of G output by the algorithm at any step can
be described as an explicitly known “multiplicative combination” of its G inputs. More
precisely, there should exist an algorithm Extract which, given the random tape � of
R, its inputs (s, g1, . . . , g�) ∈ {0, 1}∗×G�, and its code co(R), enables to retrieve, for
any y ∈ G output by R, the coefficients a1, . . . , a� ∈ Zq such that

y = ga1
1 · · · ga�

� .

Moreover, it is required that the procedure Extract runs in polynomial time with respect
to |co(R)| (the size of the code of R) and τ = T (R). We denote the time complexity
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of one Extract execution by τ
EXT

. Though an algebraic algorithm may not be treated
as a black-box, we will use the notation MR to express the algorithm obtained by an
algorithm M which uses R as a subroutine and possibly makes calls to Extract.

Definition 10 (Group-invariant reductions). Let n and n′ be two non-negative inte-
gers. A reduction R from n-DL to n′-DL is said to be group-invariant if R exclusively
feeds the n′-DL solver with challenges containing the same group G which was given
by Gen in the n-DL experiment.

Theorem 11 (Separation for algebraic reductions). Let n, ε, ε′, τr be as in Lemma 4.
There exists a meta-reduction M (non black-box) such that, for any algebraic group-
invariant black-box (ε, ε′, τr)-reduction R from n-DL to (n + 1)-DL which makes at
most � “Launch” or “Rewind” queries to the underlying (n + 1)-DL-solver, MR is
an (ε′, τr + 2(n + 1)� · τ

EXP
+ � · τ

EXT
)-n-DL solver.

Proof. This proof is similar to that of Theorem 5 except that M needs to simulate the
(n + 1)-DL-solver A1 in a different way.

DESCRIPTION OF M. At the beginning, M is challenged with (G, g1, q, y0, . . . , yn)
and forwards this challenge to R. Then M has to deal with the queries made by R:
“Launch”, “Rewind” and queries to the DLg1 oracle. That latter is simulated in a
straightforward way by the meta-reduction, since its own oracle is relative to base g1
as well and the number of queries asked by R is less than n. For the “Launch” and
“Rewind” queries, we have to show how M simulates the (n + 1)-DL-solver A1. We
assume that at least one execution of A1 will terminate correctly: A1 asks n+1 discrete
logarithm queries and receives correct answers. We denote this event by Good.

The subtlety is as follows. On a “Rewind”-query, R can specify another base (and
the DL-queries made by A1 will be answered by R relatively to this base). However,
A1 being started with new inputs but unchanged random tape must ask the same DL-
queries (they only depend on the random tape). We now show that this is not a problem,
as long as one execution goes correctly (event Good). For convenience of notation, we
denote g1 as y−1 and for any i ∈ [−1, n] we note αi = logg2

yi. For completeness
we explicitly specify the random tape � of the reduction R (keep in mind that this
randomness is provided by M which has non black-box access to R).

A “Launch”-query is processed as follows:

Launch(G, g2, q, z0, . . . , zn+1)
(b−1, b0, . . . , bn) ← Extract(g2, �, co(R)) // we have: g2 =

∏n
j=−1 y

bj

j

// up to a permutation, we can assume b−1 �= 0
for i = 0 to n do

ri ←U Zq // A1 asks at most n + 1 queries
Submit gri

2 yi to DLg2 (simulated by R) and receive answer θi

αi ← θi − ri // clearly αi = logg2
yi = xi

α−1 ← b−1
−1(1 −

∑n
j=0 bjαj) // we have α−1 = logg2

g1 = x−1 �= 0
for i = 0 to n do

ci ← αi/α−1 mod q // ci = logg1
yi

Abort the interaction with R

From above, it is clear that if a “Launch”-query goes successfully (n+1 DL-queries
that are answered correctly), M is able to recover all ci = logg1

yi for i ∈ [0, n].
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On the other hand, if the first A1’s execution that goes successfully6 is a “Rewind”-
query, then M does as follows. Let us denote by g′2 the (new) generator provided by R
as an input of this query, M still constructs the DL-queries as gri

2 yi (and not g′2
riyi).

However the answers are relative to base g′2 and must be exploited differently. We first
note that we have n + 3 equations: one for the Extract(g2, . . . )-query made in the
underlying “Launch”-query, one for the Extract(g′2, · · · ) in the successful “Rewind”,
and n + 1 equations δθi = ri + xi, for i = 0, . . . , n with δ = logg2

g′2. The obtained
matrix relative to the linear system with n + 3 unknowns (x−1, x0, . . . , xn, δ) is:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b−1 b0 b1 · · · bn 0

b′−1 b′0 b′1 · · · b′n −1

1 −θ0

1 −θ1
. . .

...

1 −θn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

// from g2 =
∏n

−1 ybi

i

// from g′2 =
∏n

−1 y
b′

i

i

. . .

. . .

// from g′2
θi = gri

2 yi = gri+xi
2

. . .

Up to the sign, the determinant of this matrix is easily seen to be

±Δ = b−1

(
− 1 · 1 +

n∑

0

b′iθi

)
− b′−1

( n∑

0

biθi

)

From the two “Extract” equations it is easy to see that for any i ∈ [−1, n] we have
b′i = δbi with overwhelming probability (if it was not the case, linearly combining the
two equations would lead to some xi by expliciting (b′i − δbi)xi = · · · ). It follows
immediately that Δ = ±b−1 
= 0.

As a conclusion, as soon as event Good occurs, the meta-reduction can solve the
system and obtain all the logg2

yi as well as logg2
g1, and thus can solve its challenge.

Otherwise (if R always halts A1 before it asks n + 1 DL-queries or if R always
answers incorrectly), then M outputs whatever R outputs. Thus:

Pr[SuccM] = Pr[SuccM|Good]
︸ ︷︷ ︸

we show =1

Pr[Good] + Pr[SuccM|¬Good]
︸ ︷︷ ︸

=Pr[SuccR|¬Good]

Pr[¬Good] ≥ ε′

(as in Lemma 4). The running time is easily checked. ��

Definition 12 (Regular reductions). Let R be a black-box reduction from a problem
P2 to a problem P1. We denote by suc the success event for R in solving P2 and Exec
the event that R launches at least one complete execution of the P1-solver and correctly
simulates its environment. The reduction R is said to be regular if the event Succ always
implies the event Exec.

6 We recall that a “successful” execution is defined by the fact that A1 receives correct answers,
not that A1 terminates. In fact it never terminates, since M aborts A1 as soon as it has enough
information to conclude.
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This definition captures the fact that the reduction really exploits the access given to
the P1-solver. This assumption seems quite natural, since the reduction would simply
be a P2-solver otherwise. The following result shows that the separation holds under
the hardness of the DL problem (rather than the one-more DL) if we assume R to be
regular. Moreover we get an improvement on the “extra” time of M w.r.t. R, which
drops from 2(n + 1)� · τ

EXP
+ � · τ

EXT
down to 2� · τ

EXP
+ (n + �) · τ

EXT
.

Theorem 13 (Separation for regular reductions). Let n, ε, ε′, τr be as in Lemma 4.
There exists a (non-black-box) meta-reduction M such that, for any regular algebraic
group-invariant black-box (ε, ε′, τr)-reduction R from n-DL to (n+1)-DL which makes
at most � queries of type “Launch” or “Rewind” to the (n + 1)-DL-solver, MR is an
(ε′, τr + 2� · τ

EXP
+ (n + �) · τ

EXT
)-DL-solver.

Proof. The proof differs from that of Theorem 11 in the way M simulates the oracle
DLg1 and feeds the reduction.

DESCRIPTION OF M. At the beginning, M is challenged with (G, g1, q, y). The meta-
reduction picks a tuple (r0, . . . rn) ←U Zn

q and computes wi ← gri
1 for i = 0, . . . , n.

Then, M feeds R with (G, g1, q, w0, . . . , wn) and has to deal with the queries made by
R. The DLg1 oracle is simulated using the algebraicity of R as follows:

Query DLg1(u)
(a, a0, . . . , an) ← Extract(u, �, co(R)) // we have: u = ga

1 ·
∏n

i=0 wai
i

Return a +
∑n

i=0 airi mod q

We now describe how M simulates A1 (on “Launch” queries).

Launch(G, g2, q, z0, . . . , zn+1)
(b, c0, . . . , cn) ← Extract(g2, �, co(R)) // we have: g2 = gb

1 ·
∏n

i=0 wci
i

α ← b +
∑n

i=0 rici // α = logg1
(g2)

r ←U Zq

Submit gr
2 · y to DLg2 (simulated by R) and receive r + β // β = logg2

(y)
d ← α · β
Abort the interaction with R

As in previous proof, the interaction is aborted if R answers incorrectly. By assump-
tion on R, there always exists a successful interaction (R answering correctly). If this
is a “Launch”-query, we can easily see from the above that M successfully outputs
d = logg1

y. If this is a “Rewind(g′2, · · · )”-query, then we have three unknowns: α, β
and δ (the values of logg1

g2, logg2
y and logg2

g′2, respectively) and three equations:
⎧
⎨

⎩

α = b +
∑

i rici // from Extract(g2, · · · )
δ · α = b′ +

∑
i ric

′
i // from Extract(g′2, · · · )

δ · θ = r + β // answer θ to DLg′
2
(gr

2y)

This is clearly solvable. Thus after one sucessful execution of A1, M is always able
to compute its solution logg1

y = α · β. The “regular” notion ensures that M has a
success probability greater or equal to ε′. ��
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Remark 14. Note that Theorem 13 is valid if we only assume that R correctly answered
(at least) a single DLg query made by A1 when R succeeds in solving its n-DL chal-
lenge. This condition is a relaxation of the “regular” notion.

5 Some Applications to the Public-Key Cryptography

Here, we derive some cryptographic consequences from the above separation results
(mainly Theorem 5). All follow from the following reasoning: if a cryptographic prim-
itive is equivalent to an n-P problem with n > 1, then our results show that the security
of this primitive cannot rely on the hardness of solving P (aka 0-P) by using classical
black-box reductions7. Below, we consider cryptographic algorithms which have been
proven secure under a “one-more problem” and summarize equivalence results.

5.1 Chaum’s Blind Signature

Chaum’s RSA-based blind signature [10] originally motivates the introduction of “one-
more problems” (see [2]). In this scheme, the public key is (N, e) and the signer’s
private key is d (with, ed = 1 mod φ(N) and the factorization of N is unknown).
The signature of a message M is x = RSA−1

N,e(H(M)) = H(M)d mod N , where
H : {0, 1}∗ → ZN is a hash function. The blind signature protocol allows a user to get
the signature of a message without revealing it to the signer. To do so, the user picks
r ←U Z∗

N and sends M̄ = re · H(M) mod N to the signer; the signer computes
x̄ = RSA−1

N,e(M̄) = M̄d mod N and returns x̄ to the user, who extracts x = x̄ · r−1

mod N . In their paper, Bellare et al. [2] defined the notion of one-more RSA prob-
lems8 and prove there exists a reduction from n-RSA to the one-more unforgeability
of the blind signature in the random oracle model. Briefly speaking, the one-more un-
forgeability means that no efficient algorithm can produce n+1 valid message-signature
pairs, after at most n interactions with the signer (remind that in such interaction, the
signer does not see the actual message, he just extracts e-th modular roots).

The other direction is fairly simple. One key point is that the forger sees the ran-
domness used in the signature; its “signing” oracle is actually an “RSA-inversion” or-
acle. We will not go into the details here, just give the rough idea. Assume we have
an algorithm A that solves the n-RSA problem. Building a one-more forger against the
Chaum’s blind signature scheme is easy: just launch algorithm A, answer its queries us-
ing the “signing” oracle (an e-th root extractor), and use its output to produce a forgery.

Now assume that the scheme can be proven secure under the standard RSA assump-
tion, using a classical black-box reduction R. Then, from a one-more RSA solver A,
we can construct a forger as above. And applying R to this forger would lead to an
efficient RSA-inverter: in other words, we would have inverted RSA starting from al-
gorithm A. But this would contradict our Theorem 5 above. Thus, the unforgeability of
Chaum blind signatures cannot be (black-box) based on the standard RSA problem.

7 We can derive a similar conclusion for sophisticated reductions which do not use “forking-
Lemma” like techniques. Since we are not aware of such reductions in the literature, we do not
expand on this.

8 As noted in [2], these problems can be hard only if factoring does not reduce to RSA inversion.
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5.2 Blind BLS Signature

In 2003, Boldyreva [6] proposed variants of the BLS signature [7], whose security
holds in GDH groups [14] (groups in which CDH is hard, but deciding if a 4-tuple
is a Diffie-Hellman one can be efficiently decided). The blind signature described in [6]
was proven secure (in the random oracle model) under the one-more CDH problem.
It considers a cyclic group G of prime order q generated by g and a bilinear pairing
e : G × G → G′ to a group G′ of order q. The secret key is an element x ←U Zq

and public key is y = gx. The BLS signature σ of a message M is given by H(M)x,
where H : {0, 1}∗ → G is a hash function (modeled by a random oracle). The veri-
fication consists in checking whether e(H(M), y) = e(σ, g) holds, i.e., we check that
(g, y, H(M), σ) is a correct DDH-tuple. The blinding signing procedure consists in
picking r ∈ Zq and sending M̄ = H(M) · gr to the signer who computes σ̄ = M̄x.
The signature is finally obtained by computing σ = σ̄ · y−r.

The security model is the same as for Chaum’s blind signature except that the forger
has access to an oracle (·)x which computes the scalar exponentiation in G on the query
with factor x. The one-more CDH problem consists in receiving n+1 random elements
h0, . . . , hn ←U G and in returning y0, . . . , yn such that yi = hx

i , while asking at most
n queries to the oracle (·)x.

One can show that n-CDH is equivalent to the one-more unforgeability of the blind
BLS. Namely, one feeds the n-CDH solver with hi := H(mi) for i = 0, . . . , n with any
chosen mi’s and returns the same output as the solver’s one. In addition, the oracle (·)x

of the n-CDH-solver is trivially simulated using the same oracle as in the unforgeability
game. The other direction was proved by Boldyreva9. As for Chaum’s blind signature,
one deduces from Theorem 5 that one cannot get a black-box reduction from CDH
problem to the unforgeability of blind BLS.

6 Conclusion

We presented rigorous arguments that a “one-more” problem n-P maybe not as hard
as the corresponding 0-P when P is self-random reducible and efficiently verifiable.
This class of problems include RSA inversion problem, computational Diffie-Hellman
problem in the pairing context, and discrete logarithm problem. As main cryptographic
consequences, we showed that the security of some blind signatures may hardly rely
on standard assumption such as the RSA inversion problem or computational Diffie-
Hellman problem. Furthermore, we showed that an equivalence result between the se-
curity of a primitive and the hardness of an n-P problem rules out the existence of a
black-box reduction from 0-P to the security notion. Finally, our results also show that
relying the security of a cryptographic primitive on a “one-more” problem n-P clearly

9 To be more precise, she proved the security of this signature under a variant called one-more
chosen-target CDH. A one-more chosen-target problem is like the variant presented in this
article except that the solver receives m instances (with m > n+1) and solves n+1 instance
of his choice with n oracle accesses. This variant is closer to the unforgeability notion, since
a forger can make more than n hash evaluations. Bellare et al. showed that both variants are
equivalent in the case of RSA and the discrete logarithm. We can apply the same technique to
show that this also holds for CDH.
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does not give any guarantee that the security of the primitive can be relied on the corre-
sponding 0-P problem, i.e., to a standard computational problem.

Acknowledgments. We would like to thank Mihir Bellare, Daniel Brown, and Daniele
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