Undeniable Signatures Based on Characters:
How to Sign with One Bit

Jean Monnerat * and Serge Vaudenay

Swiss Federal Institute of Technology (EPFL) - LASEC
http://lasecwww.epfl.ch

Abstract. We present a new undeniable signature scheme which is
based on the computation of characters. Our signature scheme offers the
advantage of having an arbitrarily short signature. Its asymptotic com-
plexity is attractive: the asymptotic complexity of all algorithms (even
the key setup) are quadratic in the size of the modulus n in bits when the
other parameters are fixed. The practical complexity can be quite low
depending on parameter and variant choices. We present also a proof of
security of our scheme containing the standard security requirements of
an undeniable signature.

Key words: Undeniable Signatures, Residue Characters.

1 Introduction

The concept of undeniable signature has been first introduced in 1989 by Chaum
and van Antwerpen [6]. This kind of signature is similar to a classical digital
signature except that one has to interact with the signer in order to be convinced
of the validity of this one. This property offers the advantage of avoiding that
any entity can verify the validity of a signature. In fact, limiting this universal
verifiability (as it is in the case of a classical digital signature) is desirable in
certain circumstances e.g. for privacy reasons. Here, the signer can control how
the verification spreads in a community.

To be complete, an undeniable signature should be composed of three main
components that are the signature generation, the confirmation protocol and the
denial protocol. The role of the confirmation protocol is to allow the signer to
prove the validity of a given signature. Conversely, the denial protocol allows a
signer (prover) to prove the invalidity of a given signature. It is important to keep
in mind that a failure in the confirmation protocol is not a proof of the invalidity
of a signature but could be only due to a lack of cooperation from the prover.
A similar argument holds also for the denial protocol. So, the confirmation resp.
denial protocol is only used to prove the validity resp. invalidity of a signature.

Since their introduction, undeniable signatures received a certain attention
and several papers related to them have been published. We give here a list

* Supported in part by a grant of the Swiss National Science Foundation, 200021-
101453/1.



of some of them, [3-5,8-10,15]. It turns out that almost all of the undeniable
signature schemes are based on the discrete logarithm. In [10], Gennaro et al.
presented an undeniable signature based on RSA. In this paper, we propose a
new undeniable signature that is based on another type of problems, namely the
ability of computing a character on Z} . This corresponds actually to a general-
ization of the quadratic residuosity problem. In the present work, we focus our
study on the characters of order 2,3 and 4. Note that the characters of order
3 have already been used in some public-key cryptosystems, e.g. [17] as well as
more general characters, e.g. [18].

In section 2, we survey the mathematical theory of the characters on Z;.
Section 3 is dedicated to the study of some problems related to the security
of our scheme, in particular for cases of order d = 2,3,4. The new scheme is
presented in the section 4. Section 5 is devoted to the security of our scheme.
We provide some proofs of some security properties such as the resistance against
existential forgery of our scheme or the soundness of the confirmation and denial
protocol. Section 6 concludes the article.

2 Characters on 7y,

In this section, we introduce the notion of multiplicative characters. The order
2, 3 and 4 cases will be exposed in the following subsections.

Definition 1. Let n be an integer. A character x on Z} is a map from Z;, to
C — {0} satisfying x(ab) = x(a)x(b) for all a,b € Z,.

From this definition, we can quickly deduce that x(1) = 1 and that the value
x(a) is always a (A(n))™ root of the unity for all a € Z7, where A(n) denotes
the Carmichael function. We can also define a group structure on the set of
characters on ZZ. In this group, the product (group operation) x1x2 of the two
characters y1 and Y2 represents the map a — x1(a)xz2(a) and the inverse x~*
maps each element a to x(a)™!.

Proposition 2. Let p be a prime and d an integer such that d|p — 1.

1. The group of characters defined on Z, is a cyclic group of order p — 1.
2. The characters on Z, of order dividing d form a cyclic subgroup of order d.

A proof of this proposition can be found at the beginning of the chapter 8 of [12].

The second part of this proposition is especially interesting for us because
we will consider characters of small order (e.g. 2, 3, 4) defined on Z;, for n large.
We notice also that a character of order d maps the elements of Zj to the set
{¢J 10 <j <d—1} where ¢4 denotes the unit €>7/? and i := v/—1.

We provide a way to define certain multiplicative characters on Z} for a n
being the product of two special primes. Since Z}, is not cyclic, using the above
definition to this case is not suitable. It is more natural for our purposes to
define such characters in the similar way as the Jacobi symbol is defined from
the Legendre symbol. First, assume we are given an integer d and two different



primes p, q such that d|p — 1 and d|¢ — 1. From two characters x; and x2 of
order d defined on Zj respectively Z;, we define a character 7 of order d in the
following way n(a) := x1(a mod p) - x2(a mod q).

For each character x of order d we will sometimes associate a logarithm
function denoted as log, . For an element a € Zj,, we know that x(a) is of the

form Ci fora j € {0,1,...d — 1}. We define log, (a) equal to this j.
In the following subsections we present some complements that are specific
to the cases d = 2, 3,4. For more details, we refer to Ireland and Rosen [12].

2.1 Characters of order 2

Let p be an odd prime number. By Proposition 2, we know that there are only
two characters of order 2, namely the trivial character e that maps every elements
to 1 and the Legendre symbol. We recall that the Legendre symbol (a/p) for an
integer a with (a,p) =1 is 1 if a is congruent to a square modulo p (quadratic
residue) and —1 if it is not the case (quadratic non-residue). It turns out that
there are ’72;1 quadratic residues resp. non quadratic residues in Zj.

For an odd integer n, the Jacobi symbol (a/n) for an a € Z s.t. (a,n) =1
is defined as (a/n) = (a/p1)™ - (a/p2)™ - - - (a/pr)™ where the factorization into

primes of n is pi' - - - p;*. Some additional properties are given below.

Proposition 3. Let p be an odd prime, a, b € Z and an odd n € Z. Then

aP=V/2 = (a/p) (mod p).

(ab/n) = (a/n)(b/n).

. If a=0b (mod n), then (a/n) = (b/n).

. (Quadratic Reciprocity) (a/b)(b/a) = (71)(?1)(1’;21) for a and b odd.

(2/n) = ()"

Let us consider a modulus n = pq. From the above discussion we deduce
that the complete list of characters of order 2 on ZZ is (-/p), (-/q), (-/n) and
the trivial character. Note that the properties given in Proposition 3 are used in
order to compute the Jacobi symbol in a time complexity of O(log(n)?).

SUAs o te

2.2 Characters of order 3

Here, we introduce the ring of Eisenstein integers. Indeed, this ring is the natural
structure to study the characters of order 3 or the cubic residuosity. Most of the
results below are taken from [12].

In what follows, w will always denote the complex number _1%‘/?3 We define
the ring of the Eisenstein integers as the set Z[w] := {a + bw|a,b € Z} with the
classical operations (addition, multiplication) of C. We notice that w is a non
trivial cubic root of 1 and satisfies w? + w + 1 = 0.

For an element a € Z[w|, we define the norm N(a) = ad@, where & denotes
the complex conjugate of . This is the classical (squared) norm induced by the
complex plane. From the definition, we have N(a + bw) = a® — ab + b?.



It can be shown that Z[w] is a unique factorization domain i.e. every elements
can be decomposed in a product of irreducible elements uniquely up to a unit
element. We can also call the irreducible elements the prime elements of Z[w]. To
avoid some confusion a prime of Z will be called a rational prime if the context is
not clear. The units are the invertible elements and in this case all have a norm
equal to one. Hence, the units of Z[w] are 1, +w, +w?. All prime numbers of
Z]w] are classified below.

Proposition 4. The following statements describe all primes of Z[w].

1. Let p be a rational prime s. t. p =1 (mod 3). There exists a prime 7 s. t.
N(m) =7n7 =p.

2. If q is a rational prime s. t. ¢ =2 (mod 3), then ¢ is also a prime in Z[w].

3. 1 —w is prime and N(1 —w) = 3.

The ideal generated by a o € Z[w] is denoted by (o) and is equal to o - Z[w].

Proposition 5. Let m be a prime in Z|w|. Then Z[w]/(7) is a finite field with
N(r) elements.

We can also prove that the set {a+bw|0 < a,b < ¢} resp. {0,1,2...,p—1} form
all representatives of the residue class field in the case where ¢ = 2 (mod 3) resp.
p=1 (mod 3). We can also prove that for a prime 7 s.t. N(7) # 3 and « € Z[w]
s.t. @« Z 0 (mod 7), we have T =i (mod ) for an i € {0,1,2}. Here, w'
is called the cubic residue character of @ modulo 7 and is denoted as (a/7)3 or
as xr(a). If a =0 (mod 7), we set xr(a) =0.

Let o and (3 be in Z[w]. Suppose the prime factorization of 3 is u Hle e
where N(m;) # 3 for all 1 < i < k and u is a unit. Then the Jacobi-like symbol
(a/B)3 is defined as Hle(oz/m-)gi. In order to formulate the law of cubic reci-
procity, we have to introduce the concept of primary. We say that an element «
of Z[w] is primary iff « = —1 (mod 3). Note that the term “primary” does not
only apply to prime number!. Every elements possess exactly one associate that
is primary. (An associate of an element ¢ is an element that is of the form uo
for a unit u.)

Proposition 6. Let w be a prime s.t. N(w) #3 and «, 8, v € Z[w]. Let 0 =
3(A+ Bw) — 1 be a primary with A, B € Z.

(a/m)3 =1 iff x> = a (mod ) is solvable, i.e., iff o is a cubic residue.
(aB/7)s = (/7)s(B/7)s-

a=f (mod vy) = (a/7)s = (8/7)s-

. (Law of Cubic Reciprocity) If a and 8 are primary. Then (a/B)s = (8/a)s.
(w/o)z = wATE.

(1—-w/o)z = w?4.

S T fe e

! The analog notion of “primary” in Z is the notion of “negative” number.



We are now in the position to define the characters of order 3 on Z, for a rational
prime p and their extensions on a composite modulus that is a Jacobi-like symbol.
We consider only the case where p = 1 (mod 3), since the characters are not
trivial only in this case. Set p = w7. Recall first that the field Z[w]/(7) can be
represented by Zy since the set {0, 1...p—1} contains all representatives and the
multiplications are equivalent in the two cases. Thus, the cubic residue characters
X~ is completely defined on Zj. We directly deduce that X2 is another non trivial
character of order 3 and is even equal to xz on the rational integers. Let p, q be
two different rational primes such that p = ¢ =1 (mod 3) and 7, o € Z[w] such
that N(7) = p and N (o) = q. Let n = pq, the character on Z; produced by xr
and x, is denoted by xr, and is defined as xr»(a) = xrx(a) - xo(a). The other
characters are defined exactly in the same multiplicative way. There are 8 non
trivial characters of order 3 defined on Z7, namely X, Xz, Xo» X&; Xros Xro»
X and Xzs.

Here, we explain how to find these characters and how they can be computed.
The first statement consists of finding a prime 7 € Z[w] such that N(w) =
p = 1 mod 3 for a rational prime p. We assume here some knowledge on the
algorithms of Tonelli and Cornacchia (For more details see Cohen [7]).

For a given p, we have to find an element a+bw € Z[w] such that a® —ab+b? =
p. This is equivalent to (a — %)2 + % = p. By introducing the two new variables
s=a—2%andt =%, we obtain s? 4 3t> = p for s,t € Z. Now, it suffices to apply
the algorithm of Cornacchia to solve this equation in s and ¢. This algorithm
consists of finding an # € Z such that 2> = —3 (mod p) (apply algorithm of
Tonelli) and then applying the Euclid algorithm to 2 and p until we get the first
rest term 7, such that 72 < p. A solution is given by setting s = 7.

Suppose we have a character y, where a can be for example 7o or 7g. The
computation of a residue character (o/«)s can be done using a similar technique
to the computation of the Jacobi symbol in the context of quadratic residuosity.
Indeed, this consists of reducing o mod a by an Euclidean division in Z[w] and
then applying the cubic reciprocity law to exchange the two elements of the
character. This last step can be done only after having extracted some units
in order that a and o become primary. Then by iterating this operation, we
reduce the size of the elements involved in the cubic residue character until this
one becomes trivial. Note that the asymptotic complexity of the computation
is O(log(n)?) using standard arithmetic and O(log(n)?loglog(n)logloglog(n))
using fast arithmetic. This is almost the same order of magnitude as the classical
Jacobi symbol that is O(log(n)?) (See Cohen [7] p. 31). For more details about
this algorithm and its complexity we refer to Scheidler [17].

2.3 Characters of order 4

Studying the characters of order 4 consists principally of the theory of bi-
quadratic residuosity. This one is quite similar to that of cubic residuosity and
is done in the ring of Gaussian integers Z[i]. A rational prime p of the form
p =1 (mod 4) is the norm of a prime 7 in Z[i]. The field Z[i]/(7) has the set



of representatives {0,1...p — 1} and is identical to Z,. The biquadratic residue
character of an o € Z[i] is defined as x,(a) := i/ where j € {0,1,2,3} and such
that aV(M=1/4 = jJ (mod 7). Moreover, this character generates the two other
nontrivial characters of order 4. Note also that the square of x, is equal to the
quadratic residue character x,. We can also define a Jacobi-like symbol in this
context similarly to that in the theory of characters of order 3. Moreover, there
is also a law of reciprocity in a similarly way as before.

2.4 Characters of higher orders.

It is possible to extend our character constructions to some orders greater than
4. By introducing a power residue symbol defined on the integers of a cyclotomic
field. A general treatment of these cases would be beyond the scope of this paper.
Moreover, the computation seems to be more difficult to deal with and the ring
of these integers becomes a non unique factorization domain when the order is
large. Since such a ring is not a principal ideal domain, we should work with
ideals that are generated by more than one element. However, we do not loose
the existence of the reciprocity laws, namely there exists a so called Kummer’s
reciprocity law (see [14]).

3 On the Hardness of Related Problems

Here we expose some different computational problems that will be related with
the security of our scheme. In particular, we focus this treatment to the case of
characters of order d € {2,3,4}.

For two problems P and P’, we use the Karp reduction, i.e. we say that P
is at most as hard as P’ if the problem P can be solved in a polynomial time
by using one access to an oracle Op: that can solve P’. We will denote this as
P < P’. Moreover, this is also equivalent to say that P’ is at least as hard as P.
We say also that two problems P and P’ are equivalent if P < P’ and P/ < P
are satisfied. We denote this property as P = P’.

Let 8 be a dth primitive root of 1 in C, where d is typically equal to 2,3, 4.
Below we expose the different problems.

FACT. For a given n € Z, find the factorization of n in Z.
CYCLOFACT?. Let o be an element of Z[0]. Find the factorization of .
ROOT(—3). Let n € Z be such that —3 is a quadratic residue modulo n. Given

n, find an u € Z such that u? = —3 (mod n).
ROOT(—1). Let n € Z be such that —1 is a quadratic residue modulo n. Given
n, find an u € Z such that u? = —1 (mod n).

FERMATY. Let n € Z be such that n = 77 for a 7 € Z[6]. Given n, find .
CHARACTERY. Let n € Z. Devise an algorithm which given x € Z; computes
Xx(x) where x is a hard character of order d on Z,.

MOVA? Let n € Z, s be a positive integer and x a hard character of order d
on Zf. Given s pairs (a;, x(«;)), where a; € Z7 for all 1 < i < s and x € Z



compute y(z).

Remark. By “hard character” we mean a nontrivial character and for d = 2 we
also exclude the Jacobi symbol (-/n).

Lemma 7. FACT = CYCLOFACT? and FERMAT? < CYCLOFACT?
for d =2,3,4. FERMAT? = ROOT(—3) and FERMAT* = ROOT(-1).

The proof is given in the appendix A. See also Landrock [13] for another cryp-
tographic application of Fermat numbers (i.e. FERMAT* and ROOT(—1)).

CHARACTER? plays an important role in the security of our signature. In-
deed, the ability of signing will be related to the computation of hard characters
when n cannot be factorized. Notice that this is a generalization of the quadratic
residuosity problem on which the security of the probabilistic Goldwasser-Micali
encryption is based [11]. In practice, we will consider a modulus of the form
n = pq. For d = 2, such characters are simply the Legendre symbols modulo p
and q. For d = 3, we can use the non trivial characters. For example, X, is a
case where the security is related to FERMAT? since N (7o) = n. Indeed, an
enemy that knows a square root of —3 modulo n would be able to retrieve this
character by Lemma 7. Thus, FERMAT? > CHARACTER? and similarly
FERMAT" > CHARACTER". Note also that MOVA“ < CYCLOFACT"
but MOVA? < CHARACTERY? in some cases only, because the character de-
vising in CHARACTER? may be independent from the character required for
MOVA*.

4 Description of the MOVA Scheme

We present here the components of our undeniable signature scheme called
“MOVA”2,

Public Parameters. Let s,t, k, £ be some positive integers whose size de-
pend on the required security level of the scheme. We let § denote a primitive
dth root of 1 in C, where d € {2,3,4}.

Primitives. We assume the existence of two pseudorandom generators

Gy :{0,1}* — (Z*)® and Gy : {0,1}* — (Z*)". We also assume the exis-
tence of a commitment scheme denoted as COMMIT : z — (< x >, OPEN,,)
and CHECK(z, < z >, OPEN,).

Setup. The signer generates an n and a hard character x of order d on Z,.
Then he takes a string Id € {0,1}* and computes G1(Id) = (a1, ...,as).
Finally, he computes the logarithm of the character residues of the «;’s. We
set Xy := (e1,...,¢es) an element of {0,1...d — 1}* where e; = log, () for
all 1 <7 <s. If the e;’s do not span Zg or ¢; = (%) for all 1 <7 < s in the
d = 2 case then restart with another Id.® For d = 3 or 4 we can either start

2 “MOVA?” is related to the names of the authors of the present paper.
3 As discussed in Subsection 5.6 an authority could be involved in this scheme in order
to tolerate low s parameter.



by generating prime numbers p and ¢, take n = pq, get w such that 77 =n
and set x = (./m)q, or directly generate n = 77 from a random 7 € Z[f].
The latter is performed with smaller complexity but the factorization of n
is unknown.

Public Key. Kp = (n,1d, X,,).

Secret Key. Kg = .

Signature generation. Let m € {0,1}* be a message to sign. The signer
generates Gz2(m) = (01,...,05:). Then the signer computes ¢; = log, (5:).
The signature of m is X, where X is defined as

Y= (c1,c2,...,01).

Confirmation Protocol. We denote here the prover as P and the verifier
as V. The signer is given (m, X') that is also public. Here is the sketch of the
protocol.
Repeat k times :
1. V picks some values ay, as,...as,b1,...b € {0,1...d—1} and a v € Z}
randomly. Set § :=~v%-[[_, a% - [I'_, 8% mod n. V then sends d to P.
2. P computes r = log, (4) and sends r to V.
3. V checks if r = Y7 ae; + 22:1 bic; mod d. If this equality does not
hold, V rejects the signature.

For some security reasons, this protocol must include a commitment function.
Indeed, we notice that somebody could use this protocol several times in order to
sign a message of his choice. This can be easily done by sending the 3;’s instead
of 4 to the prover. A way to prevent against a such attack is to use a commitment
function as mentioned in Gennaro and al. [10]. In our confirmation protocol, the
modification works in the following way. After having computed r in Step 2., P
runs COMMIT(r) and sends < 7 > to V and then V sends v, a1, ...as,by,...bs
to P. The prover checks that 6 = % - [[°_, a% - [['_, A% mod n really holds.
Finally, P sends r, OPEN,. to the verifier that can then effect Step 3 and do
CHECK(r, < r >, OPEN,.).

1.5,

<r>

a;;’s, bij’s, vi’s

r,OPEN,.

Fig. 1. Confirmation Protocol with commitment

Note that the confirmation protocol can be completely parallelized (see Fig-

ure 1). V sends d1,... &5 defined as §; =~ - [[5_; f" - H;:1 ﬂg” mod n where

the a;;’s, b;;’s and v;’s are picked at random. This protocol continues similarly



with 7 := (r1,...,7) as the prover will commit. Finally, after V' has sent the
ai;’s, bi;’s and the «;’s to P, this one opens the commitment of the values r;’s.
Note that V' can generate the a;;’s, b;;’s and the 7;’s in a pseudorandom way
and send the seed of the pseudorandom generator. This method can considerably
decrease the communication complexity.

Denial Protocol. Here, the verifier V' is given a message m € {0,1}* and

an alleged non-signature X where X' = (c1,...,¢:). The protocol works as
follows.
Repeat /¢ times:
1. The prover picks a matrix A = (a;;) € ZY° at random and a ma-

trix B = (b;;) € Z** of rank t. He then computes ¢; := > i1 aijej +

2321 bijej and ri i= 377, aije; —l—Z;:l bijlog, (0;) for all 1 < <t. Set

Q = (¢;) and R = (r;). P computes §; := 7?-]_[;:1 a?” -H;Zl ﬁ?” mod n.

He finally runs COMMIT (v, A, B), COMMIT(R) and sends < v, A, B >,

< R > and the values §;’s, Q to V.

V picks a challenge u € {0, 1} at random and sends u to P.

3. If u = 0, he sends v, A, B,OPEN(, 4 p) to V. If u = 1, he sends
R,OPENpg to V.

4. If u =0,V does CHECK(v, 4, B,< v, A, B >,OPEN(, 4, p)) and checks
that 8; = 7 - TIi_; o - TTi_, 87 mod n for all 1 <i <t,
q; = E;:l Aij€j + Z;’:l bijcj for all 1 S ) S t. If uw = 1, V' does
CHECK(R,< R >,0PENg) and checks that Q # R. He then checks
that r; = log, (6;) for all 1 <4 <t by interacting with P in a confirma-
tion protocol on the “signature” R of 4.

N

5 Security Analysis

Here we analyze the security of our proposed scheme. We do not recall here every
security properties suitable for an undeniable signature and refer to [8] and [10].

5.1 Validity of the Public Key
We say that a public key is valid if

1. the set {e;...es} spans Zg,
2. when d = 2 there exists at least one j s.t. e; # (5£),
3. the set {1 ...as} spans Z% /(Z%)4.

If these conditions are fulfilled, we can prove that there exists at most one char-
acter x such that x(«;) = e; for 1 <i < s and that this character is a hard one
of order d. Note that the third condition is the only one which cannot be checked
by V. This will be probabilistically satisfied depending on s. The first two are
already avoided in the Setup of the scheme. Assuming that G behaves like a
random oracle, an analysis of the probability shows that the third condition is



not checked with probability 2% — 4% for d =2 and 3:% — 9% for d = 3. For d = 4,
this probability has magnitude 0(2%) See Appendix B for more details on this
computation. So, for d = 3 and s = 52 this probability is approximately 2750,
Thus invalid keys cannot be forged in practice.

5.2 Signature Forgery and Impersonation.

In this subsection we show that our signature scheme is resistant to an existential
forgery attack and that nobody else than the prover can confirm or deny a given
signature.

Let first consider an attacker A; living in the model of security of an unde-
niable signature. In a such model, A; is supposed to have access to an oracle
able to sign some queried messages, to a second oracle playing the role of the
prover in the confirmation protocol and to an oracle able to play the role of the
prover in the denial protocol. In fact, by looking at the confirmation protocol
and denial protocol and assuming that Gs is a random oracle, we can see that
Ay does not learn more information in this model than having a random source
S generating some pairs (u,log, (1)) € Z;, x Z4. Hence, this attacker reduces to a
new attacker A having S to his disposal. Assuming now that the «;’s generate
7 /(Z*)%, an attacker picking some random values v € Z*, a;’s in {0,1...d—1}
and then computing v - [[}_; " is also able to simulate the source S. Thus,
As can be replaced by an attacker Aj that possesses only the public key. We
conclude by saying that any attacker of our scheme will be then considered as
As. Finally, notice that Ajz is exactly in the situation that corresponds to the
assumption of the problem MOVA? (see section 3.) .

To prepare these security proofs we first need the following results.

Theorem 8. Let ¢ : G — Zq be a group homomorphism. If one can compute
a f such that Pryec(f(x) # p(z)) < % with a constant & < 1, then one can
compute @ in a number of calls to f bounded by a polynomial in log(#@G).

We have postponed the proof of this theorem to the appendix C.

Assuming that «; . ..o, span Z% /(Z%)? and using Theorem 8, we show that
an entity that is able to confirm or deny a given signature must be able to
compute the character, i.e. he possesses the secret key. Indeed, in these two
protocols, it is requested to the Prover to evaluate the logarithm of the character
on different values (e.g. §). Passing these tests corresponds to the ability of the
computation of log, . More precisely, in the confirmation protocol we can see the
Prover as a function that takes on input the value § depending of the a;’s and
b;’s and computes logx((S). We can see this process in one function that is defined
on the Abelian group Z; and whose values lie in Z;. We see that we can directly
apply our above general results to this function, since it satisfies the properties
of the function ¢ of Theorem 8. Thus, an entity that can evaluate this function
with a small error probability is able to compute the character x by Theorem 8.



Corollary 9 (Privacy of Confirmation). Let X' be a valid signature associ-
ated to a valid public key Kp. If MOVA? is hard, then no fake prover can pass
the confirmation but with a probability bounded by (1 — l%)k for any € < 1.

This corollary protects a user against an impersonation during the confirmation
protocol. So, an enemy is not able to confirm a message signed by a given person
without knowing his secret key. The case of the denial protocol is more subtle
because the number of characters the prover has really to compute is not fixed.
In fact, when v = 1 he has a huge probability to pass the test by answering at
random. It can happen with probability 27¢, that the prover does not need to
compute any character at all. In anyway, he will have to distinguish between
u = 0 or u =1 in order to pass the test. Thus the probability of success of the
enemy is in anyway less than 2~¢ since the prover cannot know the value wu.

After this discussion and having exposed Theorem 8, we can obviously say
that our scheme is resistant against existential forgery.

Corollary 10 (Hardness of existential forgery). Assuming that MOVA?
is hard and that Go is a random oracle, then no attacker can forge a wvalid
signature for a message m but with a probability bounded by (1 — %)t for any
&< 1.

5.3 The Confirmation Protocol

We provide below some properties on the security of the confirmation protocol.
From now on, Sign(m, Kp, P) denotes the signature of the message m of the
user P possessing the public key Kp.

Proposition 11 (Confirmation protocol).

Completeness. Let ¥ = Sign(m, Kp, P) be a valid signature. If P and V
follow the Confirmation Protocol, then V always accepts the validity of the
signature 3.

Soundness. Let X # Sign(m, Kp, P) be an invalid signature with respect to
Kp. Then a cheating Prover P can confirm the signature X with a probability
not better than =, where p is the smallest prime factor of d.

Zero-Knowledge. The confirmation protocol is zero-knowledge.

Proof (Sketch). The completeness is obvious by looking at the protocol.

For the proof of the soundness, we investigate what the behavior of the
cheater P should be in order to bypass the confirmation protocol. For sake of
simplicity, assume also that the signature X' differs to Sign(m, Kp, P) at only
one component. W.l.o.g. assume that c¢; # logx(ﬁl), where the term (7 is the
first term of G2(m). Passing one round of the confirmation protocol is equivalent
to be able to find the value v :=>"7 ;| aze; + Zle b;c; mod d knowing the e;’s,
log, (Bi)’s and log, (§). Since v —log, (§) = b1(c1 —log, (B1)), we deduce that the
cheater passes the test iff he can find the value b;. This is not possible because
the value ¢ can be generated in several different ways, i.e. for several different



v € Z}, a;’s and b;’s. Thus, the d different distributions of the J corresponding to
the d different fixed values by are indistinguishable when d is prime. Otherwise,
the assertion remains true when we replace d by p in the worst case. Therefore,
he cannot do better than supposing the correct v in a set of at least p elements.

Zero-knowledge: A honest verifier can easily simulate the transcript of the
protocol. Since a dishonest verifier has a negligible probability to pass the pro-
tocol, our confirmation protocol is therefore zero-knowledge. a

5.4 The Denial Protocol
Proposition 12 (Denial protocol).

Completeness. Let X # Sign(m, Kp, P) be an invalid signature. If P and
V' follow the Confirmation Protocol, then V always concludes the invalidity
of the signature 3.

Soundness. Let X = Sign(m, Kp, P) be a valid signature with respect to
Kp. Then a cheating Prover P can deny the signature X with a probability
not greater than 2%

Zero-Knowledge. The denial protocol is zero-knowledge.

Proof (Sketch). Completeness: It is obvious by examining the denial protocol.
Soundness: First, notice that a cheating prover can easily pass the denial
protocol if he would be able to find when w = 0 or v = 1. Conversely, if he has
not this ability, he cannot pass the denial protocol with a probability greater
than 2%; if we assume that the soundness of confirmation protocol is perfect.
Zero-knowledge: For uw = 0 a verifier can trivially simulate the transcript of
the protocol (assuming that < R > can be simulated). For « = 1 he can pick
some a;;’s and 7;’s at random then set ¢; := 2;21 aije; and §; := Z‘-i-]_[j-:l a?”.
He can pick R # @ at random then simulate the protocol. One can easily prove
that the generated (0, @, R) have the same distribution as in the protocol. He
then needs to simulate the confirmation protocol. a

5.5 Complexity

The complexity of the signature generation is the computation of ¢ characters.
For the confirmation protocol, the verifier needs about k- (s+t)-(d—1)/d multi-
plications in Z assuming that the values o2, 37, 2, 2 mod n are precomputed.
In the same protocol, the prover has to perform k character computations. The
denial protocol requires about £ -t - (s +t) - (s — 1)/s modular multiplications
and k - £/2 character computations to the prover. The verifier has to compute
1/2-(¢t+k)-(s+1)-(d—1)/d modular multiplications*. Note that character com-
putation is asymptotically comparable to multiplication in terms of complexity

i.e. O((logn)?).

4 Note that, it is possible to adapt the protocol of [10] in order to reduce the complexity
of the denial protocol.



The setup protocol requires the computation of s characters as well as finding
the hard character. This step can be realized in two different ways. The first one
requires the generation of two primes p,q with a complexity of O((logn)*). The
second way (for d = 3,4 only) requires O((logn)?) since we have to pick a large
7 € Z[0] and compute n = 7.

5.6 Key Setup Variants

Here, we discuss some variants of the setup allowing to reduce the size of s. As
we have seen, in the first variant the signer selects his own key without any help.
The consequence is that s has to be large to ensure the security.

In the second variant, we propose that the signer selects his own key online
with the participation of a certificate authority. This allows to reduce the value
of s since the signer is limited with the number of attempts. Note also that the
complexity of this key setup is similar to the first variant, i.e. the complexity
can be quadratic with d = 3,4 and the second way for generating n as discussed
in the previous section.

The last variant allows to have a s even lower but requires a greater com-
plexity of the key setup since the signer needs to know the factorization of the
modulus n. Here, the signer generates the key itself and proves its validity to
the certificate authority or to the verifier. Below, we describe the protocol in
which the prover (signer) convinces a verifier (authority) that the «;’s generate
Z;/(Z5)".

Repeat m times:

1. The prover picks d; € Z¥ at random and runs COMMIT(4;). He sends
< 01 > to the verifier.

2. The verifier picks 09 € Z at random and sends d2 to the prover.

3. The prover computes some coefficients v € Z%, a1,...,as € {0,...d — 1}
that satisfy 6,0, = v? - H§:1 a?j (mod n). He sends §;, OPENs,, a1,...as
to the verifier.

4. The verifier runs CHECK(d1, < 01 >, OPENy, ) and checks if 6; € Z} and if

the equality 6,02 = 4 - [[;_; aj’ (mod n) holds.

It can be shown that this protocol is complete, sound and zero-knowledge.

5.7 Parameters Choice

Note that our bounds are not tight and that we believe that % can be replaced
by 1 — é everywhere®. Hence, the probability of an impersonation is similar to
that of soundness. Since an attacker cannot check the validity or invalidity of a
signature offline, the minimal size of the suitable parameters should correspond
to a probability of 2720, The signature can therefore have a length of 20 bits,

5 At the time we are wrapping up this paper, we can prove that we can replace & /12
by £/2.



i.e. t =20/(logy(d)). The same probability for the soundness of the confirmation
resp. denial protocol, implies that k = 20/(log,(p)) resp. £ = 20. If the public
key is generated offline (first variant of setup), we have to consider a probability
of 2789, Hence, the value of s is 80 for d = 2,4 and 80/(logy(3)) for d = 3.
Finally, the size of n should be as in RSA, i.e. 1024 bits. For d = 3 we get the
following size: s = 52, t = 13, k = 13 and ¢ = 20. If the «;’s are generated online
(second variant of setup) which registering the public key to an authority, we
can reduce s to s = 13. If failure cases are strongly controlled by the authority
we can even afford a security level of 2719 and have s = 6. If we can further
prove that the a;’s span Z7 /(Z*)? to authority (third variant of setup) we can
shorten s drastically to s = 2 using certificates.

For academic purposes, we can propose d =2, s =2, t=1, k =20,/ =20
(i.e. a signature of only one bit !). An enemy is able to forge a signature with
a probability of 1/2 but he would not be able to confirm it. However, the true
signer could not deny it.

6 Conclusion

We proposed a new undeniable signature and prove its security. Since the sig-
nature does not have to be an element of the size of a modulus, our scheme
offers the advantage to sign with short signatures. Moreover, we can see that the
complexity of the signature generation, the confirmation and denial protocol is
quadratic in the size of n since the most costly operation is a character compu-
tation. Furthermore, some key setup variants allow to get quadratic complexity.
Another nice property of our protocol is the possibility to confirm several sig-
natures at the same time. For this batch verification, we only need to consider
these signatures as a big one.

As a further research, we will extend our scheme to characters of higher order.
It would be also worth studying if our scheme can be modified in order to offer
some additional advanced properties such as the convertibility or the delegation.
In our scheme, we already have a kind of delegation when d = 3 or 4. Indeed, the
ability to sign, confirm an deny can be delegated by releasing one hard character
(i.e. some 7 € Z[f]) to the proxy while the original signer can keep the complete
list of characters (i.e. the factorization of n). This property holds for d # 2 since
disclosing one 7 does not fully disclose the complete factorization of n. In the
context of undeniable signature the delegation should not give the possibility for
the proxy to sign but only to confirm or deny.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof Verification and
Hardness of Approrimation Problems, Proc. 33rd IEEE Symp. on Foundations of
Computer Science, pp. 14-23, 1992.

2. L. Babai, L. Fortnow, L. Levin and M. Szegedy, Checking Computations in Poly-
logarithmic Time, Proc. 23rd ACM Symp. on Theory of Computing, pp. 21-31,
1991.



3. J. Boyar, D. Chaum, I. Damgard and T. Pedersen, Convertible Undeniable Sig-
natures, Advances in Cryptology - Crypto 90, LNCS 537, pp. 189-205, Springer,
1990.

4. D. Chaum, Zero-Knowledge Undeniable Signatures, Advances in Cryptology - Eu-
rocrypt '90, LNCS 473, pp. 458-464, Springer, 1990.

5. D. Chaum, Designated Confirmer Signatures, Advances in Cryptology - Eurocrypt
94, LNCS 950, pp. 86-91, Springer, 1994.

6. D. Chaum and H. van Antwerpen, Undeniable Signatures, Advances in Cryptology
- Crypto ’89, LNCS 435, pp. 212-217, Springer, 1989.

7. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts
in Mathematics 138, Springer, 2000.

8. I. Damgard and T. Pedersen, New Convertible Undeniable Signatures Schemes,
Advances in Cryptology - Eurocrypt 96, LNCS 1070, pp. 372-386, Springer, 1996.

9. Y. Desmedt and M. Yung, Weaknesses of Undeniable Signature Schemes, Advances
in Cryptology - Crypto 91, LNCS 576, pp. 205-220, Springer, 1991.

10. R. Gennaro, T. Rabin and H. Krawczyk, RSA-Based Undeniable Signatures, Jour-
nal of Cryptology, 13, pp. 397-416, Springer, 2000.

11. S. Goldwasser and S. Micali, Probabilistic Encryption, Journal of Computer and
System Sciences, 28, pp. 270-299, 1984.

12. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory:
Second Edition, Graduate Texts in Mathematics 84, Springer, 1990.

13. P. Landrock, A New Concept in Protocols: Verifiable Computational Delegation,
Security of Protocols, LNCS 1550, Springer 1998.

14. F. Lemmermeyer, Reciprocity Laws, Monographs in Mathematics, Springer, 2000.

15. M. Michels, H. Petersen and P. Horster, Breaking and Repairing a Convertible
Undeniable Signature, In Proceedings of the 3rd ACM Conference on Computer
and Communications Security, pp- 148-152, 1996.

16. P. Nguyen, La Géométrie des Nombres en Cryptologie, These de Doctorat.

17. R. Scheidler, A Public-Key Cryptosystem Using Purely Cubic Fields, Journal of
Cryptology, 11, pp. 109-124, Springer, 1998.

18. R. Scheidler and H. Williams, A Public-Key Cryptosystem Utilizing Cyclotomic
Flields, Design, Codes and Cryptography, 6, pp. 117-131, Kluwer Academic Pub-
lishers, 1995.

A Proofs of Some Equivalence Problems

FACT and CYCLOFACT. The case d = 2 is trivial. The cases d = 3 and
d = 4 are similar. We concentrate on d = 3 here.

FACT < CYCLOFACT?: Suppose we are given an oracle Ocycroracts that
solves the problem CYCLOFACT?. We compute the factorization of a n € Z
by calling Ocycr.oracT? on the input n. We then obtain a decomposition of
the form n = u- (1 —w)* - mmo... T - q1 - g2...q. By choosing the m;’s that
have the same norm and by combining them with u we get some terms of the
form m;m; = p;, where the p;’s are rational prime integers. Doing the same
with (1 —w)?!, provides the term 3. After this process, only rational primes will
remain in this decomposition, i.e. the factorization of n in Z.

CYCLOFACT? < FACT: Here, we have access to the oracle OpacT and we
have to factorize a o € Z|w]. To this end, we compute n = ¢G and call the



oracle OpacT on n to obtain the factorization n = [[p;. Since the rational
prime numbers p; congruent to 2 modulo 3 are also prime in Z[w], it suffices to
find the nontrivial primes m; of the form m;7; =1 (mod 3). To this purpose, we
apply the algorithm of subsection 2.2 to the rational primes p;’s congruent to
1 modulo 3. Hence, we obtain the decomposition p; = m;m; of those primes. It
remains to decide which one of m; or m; divides o. This can be decided by an
Euclidean division. Thus, all the non trivial prime divisors of ¢ are found and
therefore its factorization.

FERMAT and ROOT. We can show that FERMAT? is equivalent to solve
the equation n = s2+3t%. Then, we can easily see that a solution of this equation
gives a square root of —3 modulo n if (¢,n) = 1, namely s -t~!. The converse
assertion follows by the fact that a solution s, t is obtained by finding the shortest
vector of the lattice {(s,t) € Z2|s = tu (mod n)}. This can be done by a lattice
reduction in dimension two using the reduction algorithm of Gauss (see [16]).
Moreover, this algorithm has a polynomially complexity. a

B Probability of generating Z* /(Z*)“.

We consider here a modulus of the form n = pq, where p and ¢ are two rational
primes s.t. p = ¢ = 1 mod d. We study here the probability for s elements
ay ...ay € ZF picked at random to generate Z* /(Z: ). Observe that this group
is isomorphic to Zj/ (Z;)d X ZLy/ (Z;)d by Chinese Remainder Theorem. Finally,
this is also isomorphic to Zg @ Zg4. Thus, it suffices to compute the probability
that s elements of Z; & Z4 generate the whole group.

Case d = 2. First we observe that Z3 has 3 non trivial subgroups, namely
G := {(1,0),(0,0)}, G2 :={(0,1),(0,0)}, G5 := {(1,1),(0,0)}. The only
possibility of elements to not generate the whole group is to stay always in exactly
one of the above subgroup, i.e. to pick always the same nonzero elements and/or
the zero elements. This probability is then Pry = 4% +3 (2% — 4—15) = 21 — 4%.
The first term corresponds to the probability that all elements are equal to zero
and the second corresponds that these elements lie in one of the three subgroup
without being all equal to zero.

Case d = 3. This works similarly. The probability is gi +4 (3% — 9%) = % — 9%.
Case d = 4. Here, an exact computation would be more complicated, but the
existence of subgroups of order 8 implies that the dominant term in the proba-
bility will be of magnitude (%)S = 27% An example of subgroup of order 8 is

<(1,2),(2,2) >={(0,0),(1,2),(2,0),(3,2),(2,2),(3,0),(0,2),(1,0)}.

C Proof of Theorem 8.

We first have the following theorem. Its proof is freely inspired from [1, 2].



Theorem 13. Let G be a finite Abelian group and d|(#G). Let x1,...x, € G,
Y1y -Yr €EZg and f: G — Zq. If

ks r 1
al...lZerd (f (d'w-i-i_zlai-xi) Zgai-yl) =1l—-e> 3

zeG
then there exists a morphism ¢ : G — Zg such that o(x;) =y, for all1 <i<r
and Pryea(f(z) = o(z)) =1 —¢.

Proof. Let H := {(by...b,) € Z s.t. >.._; b;-x; € d- G}. Let &' be such that
1>¢'>e>0andlet A be the set of all (a; ...a,) in Z;/H such that

T

Pr [f(d -+ (ai+b) )= (ai+b) y]>1-¢}.

by...b, . -

zeG i=1 i=1
We have
l—e= E P d-x+ i+ 0i) - x;) = i +0i) -y

c (al...ar)EZQ/H((bl...bf)eH[f( v Z;(a )i Z}(a )y ])
z€G = =
#A ; #A
<—-—=+4+1-€)(1- .

From this, we deduce that ¢/ —¢ <¢&’- —#4_ and thus A £ .
#L5/H

Let (ay...a,) be in A. We have

zgc <b1;§{[f(d'z+;ai'zi);ai'zi;bi'yi]> >1-¢.

Hence, there exists a € G such that Pryegleste =3, b -yl > 1—¢ > 3.
Therefore, for all b € H there holds Y., b; - y; = 0. Finally, we can define ¢
such that o(d -z + >0 a;-2;) =Y i ;@i Y. 0

Lemma 14. Assume we are able to compute f s. t. Pryca(f(x) # o(x)) < e.
Then we can compute a function g such that Pryeq(g(x) # ¢(x)) < 122 with
at most 6 calls to f.

Proof. For an x € G, we compute the function g at x as follows:

1. Pick y1, y2, y3 € G.

2. Compute f(x +y;), f(y;) for i =1,2,3.

3. If fx+y1) — fly1) = f(x +y2) — f(y2), let this be g(x). Otherwise, we set
that g(z) = f(z +y3) — f(ys)-

Set Py 1= Pryec(f(y) # ¢(y) or f(z +y) # ¢(z +y)). By definition, we have
P, < 2¢. We obtain Pr(g(z) # p(x)) < 2P2(1 — P,) + P2 < 12¢2 O
Proof (Theorem 8). By iterating n times, we get Pr(f(z) # ¢(z)) < 5 -

(126)" < & - €*". For n > logﬂ%) we have Proeq(f(2) # ¢(z)) < zg-

Hence, this probability is equal to zero and the complexity is multiplied by a
factor that is in the class poly(log(#G)). O



